System Integration & Control Systems Design


Control loop: Case History 141 - Report after optimisation exercise - Part 2

April 2015 System Integration & Control Systems Design

The first part of a report, published in Case History 140 (February), showed successes obtained and problems uncovered in an optimisation exercise in a particular process plant that takes optimisation very seriously. The plant has benefited both financially and from a productivity point of view, by ensuring that their base layer controls are running properly. As mentioned, this report was circulated to other relevant departments including C&I maintenance, process engineers and management.

Example 1 – proper tuning solves the problem

The first example in this second article is of a success story. Production was complaining that the control of a level in a particular drum was extremely poor. Tight level control is needed and it is vital that the level stay as closely as possible to setpoint under conditions of frequent load changes.

The figures shown here are done by an accurate simulation, as it is much easier to see what is happening than by looking at the original graphs, which were very noisy.

The level control consists of a normal flow-level cascade. The flow control was working well, and the problem was found to be with the tuning. Levels are generally integrating type processes, which are difficult to tune if one doesn’t understand how they work, particularly on long retention time vessels, which is the case with this particular process.

Figure 1 shows the response to a 5% step change in setpoint. The original tuning was P = 0,8, and I = 24,5 minutes/repeat. It can be seen that it took the level nearly 2 hours to move the 5% and get the PV to the new setpoint! One can see why the operators were complaining of bad control performance. There is no way this control could effectively catch load disturbances.

Figure 1.
Figure 1.

The controller was retuned to P = 8,0, and I = 11,0 minutes/repeat. The response to a 5% setpoint change is shown in Figure 2. The response time to move the 5% is now only about 15 minutes, some 8 times faster. This type of performance can be critical in effective production of complex processes.

Figure 2.
Figure 2.

Example 2 – non-linearity and poor design make for an impossible situation

The second example in this article is of a major problem with the temperature control of the desuperheater on a boiler. This is a critical control as it controls the temperature of the steam, and can affect all sorts of processes in the plant that use the steam, particularly in distillation processes. The actual control is the secondary of a temperature to temperature cascade on the desuperheater. This is the control that actually operates the spray water cooling valve.

Strangely enough, even though there was a flowmeter measuring the flow of water through the valve, this was not cascaded to this temperature control which is the sensible thing to do.

The control was not working well and was running in manual, causing much aggravation and difficulty for the operators, let alone the effects on production. Figure 3 shows an open loop test which was performed by making step changes on the output of the controller, and observing the valve response by recording the flow through the valve.

Figure 3.
Figure 3.

The test shows that the valve is really bad with respect to the following:

• It appears to be hugely oversized and controller output is working very low down which suggests the valve is almost closed. There is tremendous non-linearity in this region causing instability in automatic.

• The valve is sticky, and it sometimes moves the wrong way and it also has large overshoots on stepping.

There is no way that good control can be achieved with this valve. The valve should be used in cascade flow control to the temperature controller – this will go a long way towards solving the problem.

Michael Brown is a specialist in control loop optimisation with many years of experience in process control instrumentation. His main activities are consulting, and teaching practical control loop analysis and optimisation. He gives training courses which can be held in clients’ plants, where students can have the added benefit of practising on live loops. His work takes him to plants all over South Africa and also to other countries. He can be contacted at Michael Brown Control Engineering cc, +27 (0)82 440 7790, [email protected], www.controlloop.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Loop Signature 30: Nonlinearity in control loops (Part 1)
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
If nonlinearity occurs it means that if one is to carry on controlling with the same response to changes in load or setpoint, then the tuning of the controller will also need to be adjusted to meet the new conditions.

Read more...
Control system upgrade: Smelting
SAM Systems Automation & Management System Integration & Control Systems Design
Systems Automation & Management recently completed a major control system upgrade in the smelting industry. The project was delivered on budget and achieved a positive ROI for the client.

Read more...
Gottwald drives upgrade: Ports and harbours
Abacus Automation System Integration & Control Systems Design
In the ports and harbours sector, Abacus Automation completed a significant modernisation of a Gottwald crane, improving both operational reliability and serviceability.

Read more...
Mining industry upgrade: From ageing systems to maximum capacity
System Integration & Control Systems Design
Iritron recently undertook a major upgrade in the mining sector, focusing on washing and screening plants, jigs, thickeners, tailings, water systems, conveyors and reclaimers.

Read more...
Agogo Integrated West Hub Project: FPSO/subsea offshore Angola
Moore Process Controls System Integration & Control Systems Design
The Agogo Integrated West Hub project represents a historic milestone in the FPSO and subsea industry, achieving first oil offshore of Angola. This project is the first FPSO deployment since ANPG’s establishment in 2019, and the first major project for Azule Energy since 2022.

Read more...
Integrated Robotics and Control Systems Deliver 45% Production Boost at Aquazania Waters Project and Industry
Process Dynamics System Integration & Control Systems Design
Project and Industry    Process Dynamics designed and commissioned a state-of-the-art Reverse Osmosis (RO) water purification and automated bottle filling plant for Aquazania Waters in Linbro Park, Johannesburg. ...

Read more...
Case History 199: Another example of the effectiveness of cascade control
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
In my last article I wrote about how cascade control systems can effectively overcome valve problems. This article gives another example of how a temperature control was able to perform well, in spite of really severe valve problems.

Read more...
Digital transformation from the edge
DirectLogic Automation System Integration & Control Systems Design
Edge-enabled PLCs are an accessible and affordable way for most users to collect and create value from use field-sourced data.

Read more...
Powering southern Africa’s industrial evolution for over five decades
Oilpower System Integration & Control Systems Design
Established in 1974, Oilpower is a recognised name in South Africa’s hydraulic and pneumatic sector. What started as a small, family-run business has matured into a highly structured operation with specialised teams, experienced engineers and a reputation for technical excellence and reliability. Oilpower is celebrating its 50th anniversary this year

Read more...
Case History 198: Cascade control overcomes valve problems
Michael Brown Control Engineering Fieldbus & Industrial Networking
A large petrochemical refinery asked me to perform an audit on several critical base layer control loops. This article deals with a problem found on a valve controlling the flow of fuel to a heat exchanger.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved