IT in Manufacturing


Combine edge and operational data to maximise IoT value

February 2018 IT in Manufacturing

For industrial companies engaged in digital transformation, analytics are key to turning large volumes of data into business value to enhance operations and improve the customer experience. Facing intense financial pressure and competition in rapidly changing global markets, companies need to think very carefully about where that data is and how best to leverage it. In some instances, data and analytics need to be processed centrally, such as in a cloud, to drive strategic decisions. In other situations, operational decisions will need to be made instantaneously, meaning that centralised solutions cannot provide the analysis.

Decentralised analytics, otherwise known as ‘edge’ analytics or computing, occur at, or near the edge of, the operational network. This is quite common in some consumer-facing industries. However, until recently, analytics at the industrial edge was not possible due to a mix of cost, complexity, security and technology barriers.

That is changing. Digitisation is occurring in all industrial environments. In brownfield infrastructure, intelligence is being added via devices such as sensors and gateways. In new infrastructure, we are seeing digitisation through embedded software and preconfigured intelligent equipment.

As this change has taken place, ARC has observed the market focus swinging away from centralised Big Data and analytics toward edge data management and analytics. This makes sense to some degree, as the growth of edge IoT devices and related data has skyrocketed and will continue to do so.

However, edge analytics that rely too heavily on data generated only by equipment and devices overlook some of the most valuable data and insight available to industrial companies: operational data, a portion of which is also generated at, or near, the operational edge; plus process knowledge.

Cloud and edge redefine analytics

In industrial settings, hierarchical structures have traditionally been employed to capture, access and communicate data across an organisation. Operations personnel, whether in a field environment or on the plant floor, can certainly attest to processes and technology designed to capture, share, and use the data. Yet, limits on the use of the data were considerable, constrained rather tightly at times by business siloes and technology.

This data structure precedes the Internet. As the Internet becomes a ubiquitous part of business and operating environments, this traditional data structure is being replaced.

Organisations are now beginning to see the value of a more comprehensive view of data and analysis. This improved view includes centralised processing, such as in the cloud (or even on premises on a server), and extends seamlessly to and from the operational edge.

As business leaders wrestle with the ‘data explosion’, they see cloud computing as the solution for associated volume, speed and complexity issues.

The cloud can bring massive computational power to solve problems since it provides a viable solution for combining complex and large data sets – both structured and unstructured – with advanced analytics techniques.

Examples include applying machine learning to acoustics data to predict asset failure, integrating text analysis for process optimisation, or using image analysis for product assurance.

In reaction to the growth of the cloud, the concept of the ‘edge’ of an organisation has been defined as the furthest extensions of a businesses operating environment, whether physical infrastructure, distributed operational points, or customer engagements.

Edge analytics extends data processing and computing close to or at the data sources, which include equipment and devices. In industrial operations, analytics executed at the edge typically support tactical use cases for efficiency, reliability, unplanned downtime, safety and customer experience.

Often overlooked IIoT elements

When thinking about the data for edge analytics, a common misperception is that they only consist of streaming data, time stamped based on the input source. They are often referred to as Industrial Internet of Things (IIoT) data. The thinking here is that a combination of connection, automation, edge analysis and workflow automation are key to getting value from the data.

While true, this only paints a portion of the picture within the context of IIoT strategies. What is missing is an understanding of the value of operational processes and their related data, some of which may be generated at the edge. Because these data are often generated and captured by subject matter experts (SMEs), they typically contain high-value information.

Operational data

Operational data, particularly those generated at the edge, are often underutilised, if used at all. Unless a formal process exists, these data are rarely ‘systemised’ into a source that can make them available as part of the overall pool of operational data.

Process knowledge

In addition to operational data, SMEs understand (and often design) operational processes and best practices. These high-value workers have specific knowledge of how to operate equipment, execute maintenance and ensure safety procedures. For example, crude oil engineers have expertise around impact of crude types on equipment failure during the refining process. This intellectual property is invaluable of course and organisations are fearful it will leave the business as workers retire or move on.

Technologies are now available that can mathematically model and capture that expertise as part of the analytics. In doing so, this process knowledge can be augmented with operational and IIoT data. This blending of knowledge and data can be used to drive the optimised decisions flows and equipment performance necessary for maximising IIoT strategies.

For more information contact Paul Miller, ARC Advisory Group, +1 781 471 1141, pmiller@arcweb.com, www.arcweb.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Bringing brownfield plants back to life
Schneider Electric South Africa IT in Manufacturing
Today’s brownfield plants are typically characterised by outdated equipment and processes, and face challenges ranging from inefficient operations to safety hazards. However, all is not lost, as these plants stand to gain a lot from digitalisation and automation.

Read more...
Faster access to device data
EPLAN Software IT in Manufacturing
Eplan eStock gives companies access to centralised device management in the Eplan Cloud, simplifying collaboration, and reducing coordination times and media discontinuities.

Read more...
Accurate and effective bearing replacement
SKF South Africa IT in Manufacturing
Each year, incorrect mounting is causing countless bearing failures. Overcoming this can deliver multiple benefits to owners and operators of rotating machinery, including reduced maintenance costs and fewer breakdowns.

Read more...
Comprehensive protection of the network
Phoenix Contact IT in Manufacturing
In recent years, the generation of data to create ever better transparency and control of production has become a decisive competitive factor. IIoT has also contributed to more manufacturing systems being connected to IT or cloud systems. This places higher demands on access security, which Phoenix Contact meets with the Secure Edge Box.

Read more...
Manufacturers should watch for these five trends
IT in Manufacturing
Over the last several years trends have emerged in manufacturing, realising significant advancements in machine-reliant assembly lines through to highly automated factories. As we look ahead, there are several key trends to watch.

Read more...
The role of technology in mining safety and environmental protection
IT in Manufacturing
Modern mining practices routinely integrate technology into workflows to improve operational efficiencies. AI can also play a role in managing employee health, decreasing safety risks, and managing the environmental footprint of mining and extractive industries.

Read more...
Machine safety, diagnostics and data security
Turck Banner Southern Africa IT in Manufacturing
Personnel safety systems on machines are often seen as a necessary evil. To function correctly, a safety device is required to be self-checking, which adds more complexity and costs compared to a non-safety device.

Read more...
SMOM – the future is here now
Iritron Editor's Choice IT in Manufacturing
In his presentation at the recent MESA Africa conference, Neels van der Walt, business development manager at Iritron, revealed the all-encompassing concept of smart mining operations management (SMOM), and why it is inextricably linked to the future of worldwide mining operations.

Read more...
Navigating disruption in manufacturing
Editor's Choice IT in Manufacturing
When considering IT in manufacturing, the underlying assumption is twofold: first, a wave of valuable maturing technologies can be harnessed to create new business value, and second, the environment in which these technologies will be applied will be relatively predictable, with change following a manageable, evolutionary path. However, recent disruptions have shattered these assumptions.

Read more...
Multi-discipline simulation of axial flux motors for next-generation EVs
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software’s Simcenter E-Machine Design software helps electric vehicle (EV) manufacturers and their associated supply chains to predict the performance of e-machines accurately, including axial flux electric drive units.

Read more...