classic | mobile


SA Instrumentation & Control Buyers' Guide

Technews Industry Guide - IIoT 2018

Technews Industry Guide - Maintenance, Reliability & Asset Optimisation


Have you evaluated your MOM strategy lately?
October 2011, IT in Manufacturing

What is Global Best Practice for manufacturing operations management (MOM) systems and IT architecture? What practices are recommended by MESA and other industry experts? Is our thinking outdated, too expensive to own and unable to adapt rapidly to market change?

Manufacturing companies have long been reluctant to adopt new thinking. If things worked for 20 years, why change them now? With this thinking, the world of technology has moved on and left manufacturing companies behind. Very few of these companies have kept up to date with new developments and only the truly progressive have adopted these innovations within manufacturing itself.

Manufacturing operation management (MOM)

The first proof of this state of affairs is clear by the continued use of the term MES that is so yesterday’s news. The new thinking has gone beyond MES and into the realm of MOM (of which MES is but a part). A system cannot be specified and designed using the AMR or the MESA MES definitions from the 1990s anymore and so another definition is required. MOM is a lot easier to define.

ISA-95.00.03 defines MOM as ‘activities within Level 3 of a manufacturing facility that coordinate the personnel, equipment and material in manufacturing’ and includes production operations management, maintenance operations management, quality operations management and inventory operations management. This is a lot more sensible and embracing than the traditional MES definitions.

Standards-based integration vision

The second proof that manufacturing companies have fallen behind is the lack of a standards-based integration vision. Standardisation of technologies at the control and MES levels is not the same as having a standards-based integration vision. ‘Rip and Replace’ programmes are not standards-based integration visions. For most companies, these types of ‘standardisation’ initiatives are cost-prohibitive and impractical.

A standards-based integration vision is a vision where the data transfer and transport functionality are abstracted from the application itself into a standards-based services layer (typically within a service bus) that operates independently from changing business processes. Those that have been involved in enterprise integration projects will recognise this as service oriented architecture (SOA), but this term is typically a swear word within manufacturing.

You may think that the SOA concept applied to manufacturing is outrageous and that it will never work, but do yourself a favour and read what SOA actually does according to Gartner and MESA and then think how you can apply that to your manufacturing company and MOM specifically.

A number of manufacturing companies have implemented enterprise service buses (ESBs) specifically to ease integration. Few of these ESB architectures have however made their way down into manufacturing itself, and with good reason. MESA, for instance, states that: “For MOM, a separate manufacturing services bus (MSB) is required due to a high number of transactions, a high parametric data load and near real-time requirements for operations applications.” There are success stories about MSB implementations, so the concept is viable and proven.

Master data management (MDM)

The third proof of this conservative thinking is that very few manufacturing technologists have ever heard of MDM and fewer understand what it actually means. Enterprise solutions have long relied on MDM systems to ensure naming consistency and data translation between disparate enterprise-level solutions. Manufacturing has not even given this a thought as can be seen by the proliferation of point-to-point interfaces between systems.

According to Wikipedia, “Master data management comprises a set of processes and tools that consistently defines and manages the non-transactional data entities of an organisation (which may include reference data). MDM has the objective of providing processes for collecting, aggregating, matching, consolidating, assuring quality, persisting and distributing such data throughout an organisation to ensure consistency and control in the ongoing maintenance and application use of this information.”

Is it necessary to differentiate between enterprise MDM and manufacturing MDM (mMDM)? According to MESA, in the vast majority of cases, the engineering bill-of-materials (BOM), the routing, or the general recipe from the ERP or formulation/PLM systems simply lack the level of detail necessary to communicate effectively with plant systems such as scada.

Think of a company that has acquired various manufacturing entities over time. It has consolidated the enterprise systems, but at site level, things are different. Different sites may call the same raw material different things (for instance 11% HCl, hydrochloric acid, pool acid, hydrochloric 11% etc). Then this same raw material may also have different names in the batch system, the scada, the LIMS, the stores system, the scheduling system and the MOM. This makes it extremely difficult to report for instance on the consumption of hydrochloric acid from a COO perspective, as without a mMDM for instance, the consumption query will have to be tailored for each site and system in order to abstract the quantities for use.

The alternative of course is to initiate a naming standardisation exercise that can take years to complete as changes will be required on most level 2 and 3 systems. mMDM will thus resolve a lot of issues that manufacturing companies are experiencing today in their strive for more flexible integration between level 3 and level 4 systems.

How do we bring these together?

This is all good and well, but what does it mean? How do we take these concepts and issues and combine them into one architectural model that will satisfy the requirements from both enterprise and manufacturing operations perspectives? Figure 1 shows the relation between mMDM, MDM, SOA and SOAm and how they are meant to operate together.

Figure 1. The relationship between mMDM, MDM, SOA and SOAm
Figure 1. The relationship between mMDM, MDM, SOA and SOAm

Due to the differing nature and context of the data and information, a logical split in function and architecture is required. The objective of the proposed split in architecture is to increase application flexibility without reducing the effectiveness and efficiency of the integration between systems. It also abstracts the interface mechanisms out of the application into services that can operate regardless of application changes.

Enterprise manufacturing intelligence (EMI)

The last proof of the backwards state of manufacturing systems thinking is the slow adoption rate of enterprise manufacturing intelligence (EMI) within manufacturing. I often get asked why a company should implement an EMI solution if they already spent money on a BI solution. They already have the ‘slice and dice’ and analytical ability within BI, so why waste money on an EMI solution?

To answer this question, I want you to refer to Figure 1. Within this segregated architecture, we have both BI and EMI (called OI or operations intelligence in the picture). EMI and BI have different purposes and they are aimed at a different audience. The same reasons for mMDM vs. MDM can be applied, as manufacturing-specific reporting and intelligence is different in content and data frequency than the data in BI.

Data in a BI solution is typically at the same low frequency as that of the ERP system such as daily values. For a plant manager who wants to know what is happening on a shift or hourly bases, BI will therefore be inadequate.

Executives use BI as strategic analysis and decision-making tools for the company. They typically work on confirmed and validated numbers and results as they want to ensure they have accurate data when they make the decision. These validation/confirmation or auditing steps often add considerable time between the actual event and the time the data end up in the BI solution.

Site-level production personnel however cannot wait for the niceties of auditing and validation before they take action. If a report or an EMI dashboard indicates that something is wrong, it is their responsibility to investigate and take corrective action immediately.

A pragmatic approach

Moving from current legacy systems and integration toward the standards-based integration vision is obviously not going to take place overnight. What is required is a pragmatic approach that combines current integration efforts with a phased approach towards the standards-based vision. This approach is shown in Figure 2.

Figure 2. A pragmatic approach to combining current integration efforts with a phased approach towards the standards-based vision
Figure 2. A pragmatic approach to combining current integration efforts with a phased approach towards the standards-based vision

Standard services are developed for systems not yet integrated (IT components at the bottom) based on the SOAm architecture and implemented. For applications already integrated (applications A,B,C,D on the left), services are developed to interface old technologies with the new architecture. These legacy applications are phased out over time without a loss in support of the real-time work processes or left until end-of-life before being replaced.


* International Society of Automation (ISA): ISA-95.00.03 Enterprise-Control System Integration Part 3: Activity Models of Manufacturing Operations Management.

* MESA International: SOA in Manufacturing Guidebook.

* MESA International: Data Architecture for MOM: The Manufacturing Master Data Approach.

* MESA International: Lean Manufacturing Strategic Initiative Guidebook.

For more information contact Gerhard Greeff, Bytes Systems Integration, +27 (0)82 654 0290,,

Supplied By: Bytes Systems Integration
Tel: +27 11 205 7000
Fax: 086 681 8573
Share via email     Share via LinkedIn   Print this page

Further reading:

  • Key digital transformation IT concepts for operations
    December 2018, IT in Manufacturing
    Rather than focus on the digital transformation IT concepts through a technical lens, this article looks at them in terms of their implication on industrial operations.
  • Data centre management as a service
    December 2018, IT in Manufacturing
    DMaaS aggregates and analyses large sets of anonymised customer data that can be enhanced with machine learning.
  • Operator guided solutions
    December 2018, Adroit Technologies, IT in Manufacturing
    At parts assembly production sites, where parts are picked from stock, it is almost inevitable that picking mistakes will occur. As parts become more complex and their component types increase, the problem ...
  • Software for low voltage distribution planning
    November 2018, ElectroMechanica, IT in Manufacturing
    New software from Hager facilitates planning and configuration of low voltage switchgear.
  • SKF ups the digital ante at ­Göteborg plant
    November 2018, SKF South Africa, IT in Manufacturing
    Swedish group, SKF, has been implementing digital transformation since 2015, investing close to €19 million to carry out its digital revolution at the Göteborg plant which has, for over a century, been ...
  • 3D software eliminates ­programming
    November 2018, ASSTech Process Electronics + Instrumentation, IT in Manufacturing
    More and more industrial users are discovering the potential of three dimensional software-aided object measurement. With the VisionApp 360 software, Wenglor now offers a smart tool that makes 3D object ...
  • Advanced data management from Siemens
    November 2018, Siemens Digital Factory & Process Indust. & Drives, IT in Manufacturing
    Siemens is innovating its data management software for process analytical technology (PAT) with Simatic Sipat version 5.1, which allows users to monitor and control the quality of their products in real-time ...
  • The 5 stages of cybersecurity awareness
    October 2018, IT in Manufacturing
    Before any of these recommendations can be implemented, managers must first understand and accept the risks they face and the potential consequences. An understanding of human behaviour can help. The ...
  • How adding services to products could start your journey towards an Industry 4.0 solution
    October 2018, Absolute Perspectives, This Week's Editor's Pick, IT in Manufacturing
    For manufacturers, digital transformation involves understanding a range of new technologies and applying these to both create new business and to improve the current operation. Industry 4.0 provides ...
  • Energy management software
    October 2018, Yokogawa South Africa, IT in Manufacturing
    Energy management solutions from KBC, a subsidiary of Yokogawa Electric Corp.
  • Using IIoT analytics to build customer solutions
    October 2018, Parker Hannifin Sales Company South, IT in Manufacturing
    Parker’s Voice of the Machine platform contextualises the data collected from machines.
  • Key considerations when designing IIoT networks for smart businesses
    October 2018, RJ Connect, IT in Manufacturing
    In the era of the IIoT, industries have opportunities to become more productive, more efficient and more dynamic. For example, the IIoT provides businesses with new capabilities such as dashboards that ...

Technews Publishing (Pty) Ltd
1st Floor, Stabilitas House
265 Kent Ave, Randburg, 2194
South Africa
Publications by Technews
Dataweek Electronics & Communications Technology
Electronic Buyers Guide (EBG)

Hi-Tech Security Solutions
Hi-Tech Security Business Directory

Motion Control in Southern Africa
Motion Control Buyers’ Guide (MCBG)

South African Instrumentation & Control
South African Instrumentation & Control Buyers’ Guide (IBG)
Terms & conditions of use, including privacy policy
PAIA Manual


    classic | mobile

Copyright © Technews Publishing (Pty) Ltd. All rights reserved.