Industrial Wireless


Protect the wireless network

November 2016 Industrial Wireless

Wireless is not new to manufacturing and industrial environments. It has been used for years in applications such as point-to-point data transfer and supervisory control and data acquisition (scada). However, as wireless is increasingly used for mission-critical applications and real-time control, demands on the technology are changing.

Particularly as more manufacturers build a Connected Enterprise and converge their industrial and enterprise systems into an Ethernet-based network architecture, they need reliable wireless communications with low levels of latency and jitter to achieve uninterrupted control and data access. More than that, they need to confirm their wireless communications are secure.

Given the unique risks that wireless communications face – which include the interception and monitoring of data, wireless frame spoofing, and denial-of-service attacks – security is essential. This includes using device authentication and data encryption methods that align with IEEE 802.11, which is increasingly becoming the standard for deploying reliable and secure wireless networks for industrial automation and control system (IACS) applications.

When implementing an industrial wireless network, keep in mind some of the following design and security considerations from the guide 'Deploying 802.11 Wireless LAN Technology within a Converged Plantwide Ethernet Architecture', developed by Rockwell Automation and its strategic alliance partner Cisco.

Autonomous vs unified

It is important to consider the two different wireless local area network (WLAN) architecture types used in IACS settings, as the security considerations are different for each. An autonomous architecture type uses standalone wireless access points to implement all WLAN functions. Each autonomous access point is individually configured and managed. An autonomous architecture typically is used only for small-scale deployments or standalone wireless applications. It has a lower initial hardware cost, simplified design and deployment, and offers more granular control of quality of service to help prioritise IACS application traffic on the network.

A unified architecture is used for large-scale plant-wide deployments that require a range of clients and applications. It offers foundational services, including intrusion prevention and wireless guest access, and provides the foundation for enabling plant-wide mobility.

A unified architecture solution splits functionality between lightweight access points (LWAP) and wireless LAN controllers (WLC). It has ‘zero touch’ deployment and replacement of access points, requires less effort for updating configuration and firmware, and provides centralised control and visibility.

Autonomous architecture security

The WiFi Protected Access 2 (WPA2) security standard with Advanced Encryption Standard (AES)-level encryption is the only security mechanism recommended for industrial WLAN applications. WPA2 offers the most advanced security available today for WLANs in industrial settings, while AES encryption is implemented at the hardware level and doesn’t affect an application’s performance. In an autonomous architecture, WPA2 can support both pre-shared key authentication and 802.1X/ Extensible Authentication Protocol (EAP) authentication. Factors such as your security policy, infrastructure support and ease of deployment can help you determine which of these two authentication methods is most appropriate for your autonomous WLAN.

Users also might choose to use multiple authentication methods in a single autonomous architecture, such as to support different client types.

Pre-shared key authentication uses a common password that is shared across all devices in the architecture. Keep in mind, this method can’t restrict access to specific clients – anyone with the password can authenticate to the WLAN. As a result, pre-shared key authentication is best suited for small-scale WLANs in which the clients are tightly controlled. This could include an application containing a fixed number of wireless machines using work group bridges (WGB).

802.1X/EAP authentication uses an EAP framework to provide access to a WLAN. Using the 802.1X IEEE standard for port-based access control, this authentication method offers strong security through access control based on individual user credentials. It can be used when pre-shared key authentication can’t satisfy your security requirements.

Configuration recommendations for this approach include using the EAP-FAST protocol to authenticate WGBs to the autonomous WLAN. The dedicated access point should be configured as a Remote Access Dial-In User Service (RADIUS) server to store the WGB credentials, but it should not accept any wireless clients.

MAC address authentication is a third method for authentication but isn’t secure when used alone because MAC addresses can be detected and spoofed. Rather than using this as your lone security approach, use it to supplement pre-shared key or 802.1X/EAP authentication as an additional safeguard against incidental connections in critical control applications.

Unified architecture security

A unified WLAN architecture requires certificates and other EAP protocols for authentication beyond what 802.1X/EAP authentication can provide. Additionally, pre-shared key authentication will not work in a unified architecture because it cannot provide the fast-roaming security that a unified architecture requires.

Unified architectures should use EAP-Transport Layer Security (TLS) authentication for plant-wide WLAN security. This method requires a RADIUS server located in the Industrial Zone Level 3, while local EAP certificates must be supported on the controller.

Additionally, non-roaming applications may not require EAPS-TLS authentication, but using it for both fast roaming and non-roaming will help simplify deployment and reduce confusion regarding which security method is used for different devices.

Other considerations

The hardware you select for your WLAN architecture should support your goal of achieving secure and reliable wireless communications. This includes using wireless access point (WAP) and WGB hardware, such as the Allen-Bradley Stratix 5100 wireless access point (WAP), that conforms to widely adopted IEEE 802.11 a/b/g/n standards, and provides 2.4 GHz and 5 GHz spectrum availability to meet a range of operational needs.

Newer hardware solutions that can function as either an access point in an autonomous architecture or as a WGB in both autonomous and unified architectures enable you to deploy secure and reliable wireless networks using just one device. As an access point, these devices can serve as a router to bring wireless clients into a wired network. As a WGB, they can securely connect up to 19 wired IP address clients to a wireless network.

In a unified architecture, also verify that your WLC offers full control and provisioning of wireless access points (CAPWAP) access-point-to-controller encryption. It should also provide support for detecting rogue access points and denial-of-service attacks.

Lastly, network segmentation can create separation between your control and enterprise networks. This enables you to use different security practices in each network, and can help confirm that workers in production areas are only able to access production-related data, while data from enterprise-related applications remains isolated.

Whether deploying a small wireless network based on a single access point or a larger, plant-wide network, following these standards-aligned security best practices will help harness wireless technology and the IIoT while protecting operations and intellectual property against wireless-based threats.

For more information contact Christo Buys, Rockwell Automation, +27 (0)11 654 9700, cbuys@ra.rockwell.com, www.rockwellautomation.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Advanced noise monitoring solutions
Industrial Wireless
Noise pollution is a significant hazard in the mining industry, posing serious threats to worker health and safety. Probe IMT is implementing advanced noise monitoring solutions from Canadian monitoring specialist, M3SH Technology to foster healthier, safer and more productive work environments in the mining sector.

Read more...
Automated equipment monitoring
SKF South Africa Industrial Wireless
When it comes to product design, engineering and development, SKF has always opted for a multi-faceted approach. Ticking all these boxes is the new SKF Axios; a simple, scalable, cost-effective, and cloud-based end-to-end predictive maintenance solution for rotating equipment, from SKF and Amazon Web Services.

Read more...
Taming the terrain
Omniflex Remote Monitoring Specialists Industrial Wireless
Effectively monitoring and controlling water distribution networks is crucial if we are to avoid wasting this valuable, life-preserving resource. Wireless telemetry systems play a vital role in this task, collecting data from remote locations and transmitting it to a central control station for real-time monitoring and control.

Read more...
Wireless, smartphone-operated sound level meters
TANDM Technologies Industrial Wireless
Local test and measurement company, TANDM has introduced the Brüel & Kjaer wireless, smartphone-operated 2245 and 2255 sound level meters to the South African market.

Read more...
RF-Link automation module
Industrial Wireless
The DICIO is an RF-Link automation module enabling the remote control of a corresponding module.

Read more...
Assessing the order of events
Omniflex Remote Monitoring Specialists Industrial Wireless
Being able to monitor plant alarms and events in real time, in chronological order, is critical when a plant experiences an avalanche of alarms caused by an abnormal event. Sequence of events modules can be used to cut unplanned plant downtime and reduce operational costs.

Read more...
Protecting Australia’s harbours from a silent threat
Omniflex Remote Monitoring Specialists Industrial Wireless
Omniflex has completed the addition of remote monitoring to the existing cathodic protection (CP) systems at five berths in Port Kembla, Australia. This will enhance their surveillance and provide accurate energy monitoring.

Read more...
RFID made simple
Pepperl+Fuchs Industrial Wireless
Pepperl+Fuchs now offers a practical solution for users looking for an easy entry into the world of RFID with all its possibilities. The new F191 RFID read/write device combines the advantages of sophisticated industrial UHF technology with a standardised interface for IO-link communication.

Read more...
How lighting solutions support lean manufacturing processes
Turck Banner Southern Africa Editor's Choice Industrial Wireless
The philosophy of lean principles is a big trend in the pharmaceutical industry. It emphasises using time and resources as efficiently as possible in order to reduce waste and focus on value-added activities. Here are four examples of how lighting solutions can help increase efficiency by addressing common sources of wasted time and resources in pharmaceutical manufacturing.

Read more...
Programmable LED indicators
Turck Banner Southern Africa Industrial Wireless Data Acquisition & Telemetry
Turck Banner is expanding its portfolio of LED lights with the robust LED indicators of the K100 series. These units improve workflow and reduce downtime through clearly communicated status information.

Read more...