classic | mobile
 

Search...

SA Instrumentation & Control Buyers' Guide

Technews Industry Guide - IIoT 2018

Technews Industry Guide - Maintenance, Reliability & Asset Optimisation

 

Pyrogen achieves SABS approval
March 2014, IS & Ex


Pyrogen has achieved the SABS mark in respect to SANS 15779: 2012: ‘Condensed Aerosol Fire Extinguishing Systems – requirements and test methods for components and system design, installation and maintenance – general requirements’. It is the first aerosol fire extinguishing system to achieve this approval.

To attain an SABS mark, a product must pass testing against the SANS. Further, the manufacturer’s production facility will also be inspected by the SABS to determine whether it has adequate quality assurance systems in place (such as SABS ISO 9001) to ensure that product quality can be maintained consistently. Additionally, the SABS will conduct ongoing audits of the quality management system, along with regular and ongoing tests of the product obtained from either market outlets or the factory.

This peace of mind for the buyer is, in turn, a great marketing tool for the producer. The SABS mark is an icon that it can display proudly on its products.

What is Pyrogen

Pyrogen arose out of the development in the former Soviet Union of a solid fuel for rockets. This fuel provided propulsion, but no trailing heat or flame path to guide heat-seeking missiles or alert thermal radar systems. By using a derivative of the solid rocket fuel with chemical fire fighting properties, combined with flame suppression coolant, the Soviet science laboratory, Soyuz, was able to develop a remarkable and highly effective fire suppression system.

Pyrogen consists of a solid aerosol-generating chemical and a solid chemical coolant. It is a thermo-plastic mixture consisting of a solid potassium nitrate based oxidiser, a plasticised nitrocellulose based combustible binder and patented technological additives.

When activated, the solid-generating chemical undergoes a combustion reaction producing potassium carbonates (KHCO3, K2CO3), carbon dioxide gas, nitrogen gas and water vapour (H2O(g)). This mixture represents the actual extinguishing agent.

As the reaction temperatures are high, potassium carbonates are formed in gaseous form, but as the vapour cools these condense to a liquid and then a solid.

As solid potassium carbonates are produced by condensation, the particle size is very small, approximately one micron. Micron sized solid particles mix with the gaseous carbon dioxide, nitrogen and water into a uniform homogeneous gas-like aerosol. This aerosol displays three-dimensional distribution and suspension times of up to 60 minutes.

As a combustion product, Pyrogen aerosol is hot upon formation. Although it is more effective in terms of the actual extinguishing action when in its hottest state, the negative impacts of very high temperatures are obvious. Ejection of flame at the discharge outlet and poor distribution of the aerosol within a protected enclosure is the main problem and has to be eliminated. Attempts to replicate Pyrogen by other manufacturers have been unable to overcome these negatives.

Pyrogen has a second unique formulation, the solid chemical coolant which comes into action eliminating the problems highlighted above.

When the hot Pyrogen aerosol passes through the coolant, the coolant decomposes absorbing a great amount of heat, it is a polymer composition highly impregnated with endothermic ingredients – substances that decompose at 200–300°C without melting, generating gases and absorbing approximately 400 calories of heat per second.

How it works

Application of Pyrogen coolant enables flames to be arrested at the discharge outlet and thus it provides a uniform distribution of the aerosol within the area, which contributes to the reliability and safety of the extinguishment. Moreover, the inert gases formed during thermal decomposition of the coolant contribute to the effectiveness of the extinguishment.

Primarily, Pyrogen’s extinguishing action is achieved by interfering chemically with the fire reaction. Two chemical mechanisms take place:

1. Removal of flame propagation radicals ‘chain carriers’ OH, H, and O in the flame chain. The main components of Pyrogen aerosol, potassium carbonates, are formed in the gaseous phase. In the flame chain they dissociate producing potassium radicals, which are very active and react with ‘chain carriers’ OH, H and O to remove them from the fire zone, thus disrupting the fire reaction.

The chemical action of potassium radicals in Pyrogen is similar to that of bromine radicals in Halons and can be schematically represented as follows:

K+OH → KOH

KOH + H → K+H2O

2. Recombination of flame propagation radicals ‘chain carriers’ OH, H and O on aerosol particle surface. Gaseous potassium carbonates condense to a liquid and then a solid form producing a large number of micron sized particles. Being so small, the particles produce a large surface area, where recombination of ‘chain carriers’ takes place as follows:

O + H → OH

H + OH → H2O

Secondarily, Pyrogen extinguishing action is achieved by lowering the fire temperature to a level below which the fire reaction can continue (thermal cooling). Several physical mechanisms contribute to this.

* Heat absorption via endothermic phase changes: K2CO3(s) → K2CO3(l) → K2CO3(g)

* Heat absorption via endothermic decomposition reaction: 2KHCO3(s) → K2CO3(s) + CO2(g) + H2O(g)

* Dilution of the fire combustion zone by the aerosol cloud (additional fuel molecules cannot participate in the combustion process): physical hydrance to flame propagation (aerosol particles slow down velocity of a flame front propagation) etc.

The extremely high surface area of the micron-sized aerosol particles increases the likelihood of radical recombination and heat absorbing reactions, thus ensuring rapid extinguishment with a small amount of agent.

Pyrogen has the lowest extinguishing concentration known among commercial available agents – flammable liquids (class B fires) are extinguished at the design factor of 100 g/m³ compared to 330 g/m³ (5%) for Halon 1301.

The high rate of aerosol discharge ensures a tremendous knockdown effect thus avoiding fire damage to assets or equipment.

Micron-size aerosol particles exhibit gas-like three-dimensional qualities that allow the agent to rapidly distribute throughout an enclosure and reach the most concealed and shielded location. Homogeneous distribution is achieved in a matter of seconds, while long suspension times all help to prevent fire re-ignition.

Applications

Pyrogen aerosol is suitable for the protection of a variety of potential fire hazards, including those involving flammable liquids, combustible solids, oils and energised electrical equipment.

For more information contact Samantha Wright, Alien Systems & Technologies, +27 (0)11 949 1157, sam@astafrica.com, www.astafrica.com


Credit(s)
Supplied By: Alien Systems & Technologies
Tel: +27 11 949 1157
Fax: 086 718 3430
Email: grant@astafrica.com
www: www.astafrica.com
Share via email     Share via LinkedIn   Print this page

Further reading:

  • PyroStorm provides cost-effective fire protection for control equipment
    December 2018, Alien Systems & Technologies, IS & Ex
    If you work at a large industrial plant or mine, you may have noticed those hydraulic lubricating oil packs, or perhaps the diesel generator sets, oil store rooms, pump rooms or flammable liquids stores, ...
  • Compact safety light curtains for tight spaces
    December 2018, RET Automation Controls, IS & Ex
    The new SLC4 is Banner’s most compact safety light curtain to date. It has a low-profile design and a sensing area that extends the entire length of its 160 mm housing. This Type 4 safety light curtain ...
  • Wise choices to decrease fire risk and improve safety
    November 2018, Spero Sensors & Instrumentation, IS & Ex
    Fire safety at the workplace is a topic that is easily neglected and many businesses do not devote enough attention to it. The topic quickly becomes top of mind when people lose their lives, or when a building or substantial part of an industrial plant is destroyed by fire.
  • Network-based process visualisation
    November 2018, Pepperl+Fuchs, IS & Ex
    IT technologies such as PC and server virtualisation are establishing themselves in larger plants in the process industry to reduce the growing number of PC hardware components, while at the same time increasing flexibility and availability.
  • PC-based control for the process industry
    November 2018, Beckhoff Automation, IS & Ex
    Beckhoff Automation adds Ex protection to extend its reach in hazardous areas.
  • Don’t forget to test your fire protection systems before the holiday shutdown
    November 2018, Alien Systems & Technologies, IS & Ex
    As the year draws to a close, it is natural that people start looking forward to the holidays. It is therefore quite easy to neglect to consider the damaging effect a fire could have on businesses during ...
  • Advanced light curtain improves safety
    November 2018, Rockwell Automation, IS & Ex
    The rise of robots has ushered in an increased demand for light curtains that provide a safe environment between the robotic work cells and the rest of the plant. The Allen-Bradley GuardShield 450L safety ...
  • AST’s automated fire extinguishing systems
    October 2018, Alien Systems & Technologies, System Integration & Control Systems Design
    Restoring protection after a fire is an integral part of the service.
  • Pyrogen system ideal for fire protection in cabinet systems
    September 2018, Alien Systems & Technologies, Electrical Power & Protection
    Method of operation Pyrogen is the ideal choice for in-cabinet systems. It is essentially a non-pressurised canister that contains a potent fire extinguishing compound that consists primarily of potassium. ...
  • How to choose an industrial safety controller
    September 2018, RET Automation Controls, IS & Ex
    The following are five key features to look for in a safety controller that will save time and money, as well as help ensure that operators are using the safety system correctly. As with any safety application, ...
  • Controllers simplify machines and improve safety
    September 2018, Rockwell Automation, IS & Ex
    The Allen-Bradley GuardLogix 5580 and Compact GuardLogix 5380 controllers from Rockwell Automation can be scaled from safety system levels SIL 2/PLd to SIL 3/PLe. This scalability can help engineers optimise ...
  • Extech brings i.safe Mobile to sub-Saharan market-
    September 2018, Extech Safety Systems, IS & Ex
    Extech Safety Systems has partnered with GoRugged to distribute i.safe Mobile products in sub-Saharan Africa. The IS520.1 is an industrial smartphone with current technology for use in Zone 1/21. It combines ...

 
 
         
Contact:
Technews Publishing (Pty) Ltd
1st Floor, Stabilitas House
265 Kent Ave, Randburg, 2194
South Africa
Publications by Technews
Dataweek Electronics & Communications Technology
Electronic Buyers Guide (EBG)

Hi-Tech Security Solutions
Hi-Tech Security Business Directory

Motion Control in Southern Africa
Motion Control Buyers’ Guide (MCBG)

South African Instrumentation & Control
South African Instrumentation & Control Buyers’ Guide (IBG)
Other
Terms & conditions of use, including privacy policy
PAIA Manual





 

         
    classic | mobile

Copyright © Technews Publishing (Pty) Ltd. All rights reserved.