IT in Manufacturing


Enterprise manufacturing intelligence (EMI) in process industries

December 2012 IT in Manufacturing

Relationship between business intelligence (BI) and EMI


Enterprise manufacturing intelligence (EMI) or operational intelligence (OI) as a concept has been slow in being adopted within manufacturing. Most plant managers and chief operating officers want the information contained in EMI solutions, but they cannot motivate EMI against traditional business intelligence (BI) technologies applied at enterprise level or they think it is the same thing.

EMI and BI have different purposes; and they are aimed at different audiences. Manufacturing-specific operations reporting and intelligence is different in content, context and data frequency than the data in BI. BI tools typically focus on financial and KPI-level analysis and reporting, where EMI solutions look at manufacturing-specific KPIs as well as the key process influencing factors (KPIFs) related to those KPIs.

Data in a BI solution is typically at the same low frequency as that of the ERP system such as daily values. For a plant manager that wants to know what is happening on a shift or hourly basis, BI will thus be inadequate. BI tools are typically not designed and implemented to take into account the real-time nature of manufacturing operations, and the resultant very large data rates. As such, BI is not able to handle the high frequency of data receipt and the required fast response-times of reporting/visualisation required by manufacturing operations.

Executives use BI as strategic analysis and decision-making tools for the company. From their BI systems, they can see the profitability of individual plants and sites and, as such, can make the decision to close down a plant or to change the manufacturing strategy. They typically work on confirmed and validated numbers and results as they want to ensure they have accurate data when they make the decision. These validation or auditing steps often add considerable time between the actual event and the time the data end up in the BI solution.

Site-level production personnel however cannot wait for the niceties of auditing and validation before they take action (see the time-value of information section earlier in this document). If a report or an EMI dashboard indicates that something is wrong, it is their responsibility to investigate and take corrective action. If a feed-rate is lower than planned, the production manager is not going to wait for the confirmed result in the BI system tomorrow before he takes corrective steps. No, he is going to investigate or have someone investigate for him. If it turns out to be a false alarm, then he is glad as it is a crisis averted. If something is wrong, he takes corrective action, or at least knows and expects the bad results from the BI system tomorrow.

EMI systems thus have a two-fold purpose:

1. To provide early warning in real-time for potential problems in order to make decisions or take action.

2. To provide ‘slice and dice’ on historical data for process improvement.

EMI has data available at the granularity and frequency delivered by the individual applications. This can be from seconds to days, depending on the specific operations requirement. The data is also available per individual piece of equipment, line or processing unit and can also be rolled up into hours, shifts, days or weeks for any of these. The granularity of EMI systems is closer to real-time and they are often used as real-time dashboards for operations executives.

BI may be able to provide the historical ‘slice and dice’ data, but typically not at the level of granularity required by operations managers. BI will not be able to provide the real-time early warning required by the plant. Both of these are thus needed to support manufacturing companies adequately.

Key process influencing factors (KPIFs)

KPIFs are not typically reported at enterprise level. They are not considered as KPIs as individually they have no financial impact on the business. KPIFs may however form part of an EMI implementation, as these factors influence the performance of financial KPIs.

An example of a KPIF is for instance temperature in an endothermic reaction that influences the yield (the KPI) of a specific process. If the temperature is too low, the reaction will be impeded and equilibrium will be reached before the reaction can be completed, leading to lower yield and raw-material losses. Process yield can be related to financial results directly (therefore being a KPI) but temperature cannot (as such not a KPI). The temperature of the reaction however can have a major influence on process yield. It also does not mean that if the temperature is controlled in the right range at the expense of all other variables that the yield will be better, as there may be other process influencing factors that can also affect the yield (such as contact time, pressure, agitation and shear).

KPIFs are typically stored at more granular frequency for use by process engineers and other production personnel. KPIFs are best evaluated when the values are being viewed as trends and not as a point in time. EMI solutions are thus well suited to display KPIF values as they make provision for more granular data within a context of other KPIF values.

Discreet vs continuous and process industries

EMI tools are used in the discreet industry to visualise and analyse manufacturing data in such a way as to measure performance against a schedule or plan and to determine the resources consumed to produce a number of units. EMI in this case can be used to map manufacturing indicators directly to financial indicators, using for instance resource consumption accounting.

In the continuous process industries, EMI solutions are used very differently as the final output from a process is less as a result of planning the raw-material feed into the process, and more a case of trying to abstract as much value as possible from the inherent value within the feed material.

As an example: In a discreet process, 1000 units of component A is combined with 2000 units of component B to produce 1000 units of product C. If we double units A and B we will get double the product out. The units can be counted, touched and seen. There may well be some losses due to quality or process issues, but typically these are very apparent and easy to predict.

In a continuous process however, things are less defined. 100 kilolitres of material A is received at 25% concentration. This material is reacted with 250 kilograms of material B at 99,5% and 50 kilolitres of material C at 60% to produce 450 kilograms of product D at a theoretical yield of 96,43% over a 24 hour period. In this process, pressure, temperature, feed-rate and residence time play a major role, and depending on these factors the actual yield can vary between 83% and 95%. This process is thus a lot less predictable than a discreet process and different tools and management philosophies are required to get the best from the process.

In the discreet process above, the EMI solution will show for instance the number of units being produced per hour, the number of rejects, the energy being consumed and the predicted time when the order will be completed. These indicators can all be directly tied back to financial indicators and costs.

In the continuous process, the EMI will have to display the specific feed-rate of the different materials, the temperature of the reactor, the pressure in the reactor, the pH of the solution and whether these are all balanced within the ultimate process state. None of these indicators have any relation to financial indicators or costs, but they do influence the ultimate yield of the process dramatically. In this case, the EMI solution will also have to display the KPIFs in addition to the KPIs.

Conclusion

Looking at the above, it is clear that EMI is not the same thing as BI and their actual use and benefits are not the same as they are aimed at a different user community. It also shows that an EMI within a discrete industry or a process industry will not necessarily show the same type of indicators, nor should it. There will always be overlaps as with most solutions and architectures, but as with any similar situation it is up to the users to determine and decide what they want to show and in which application.

For more information contact Gerhard Greeff, Bytes Systems Integration, +27 (0)82 654 0290, gerhard.greeff@bytes.co.za, www.bytes.co.za





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Why choose between Capex and Opex if you can Totex?
Schneider Electric South Africa IT in Manufacturing
In a sector marked by cyclical demand, high capital intensity, and increasing regulatory and sustainability pressures, mining, minerals and metals (MMM) companies are re-evaluating how they approach procurement and investment.

Read more...
AI and the smart factory
Schneider Electric South Africa IT in Manufacturing
Imagine walking into a factory where machines can think ahead, predict problems before they happen and automatically make adjustments to realise peak performance. This isn’t science fiction, it’s happening right now as AI continues to transform how we run industrial operations.

Read more...
Why your supply chain should be a competitive advantage
Schneider Electric South Africa IT in Manufacturing
The last five years have placed unprecedented strain on global supply chains. Leading companies are turning the challenge into an opportunity to transform their supply chains into a competitive advantage.

Read more...
Why AI will never truly understand machines
Wearcheck IT in Manufacturing
Cutting-edge technology and solutions powered by AI are embraced by specialist condition monitoring company, WearCheck, where the extreme accuracy of data used to assess and diagnose machine health is paramount.

Read more...
Buildings and microgrids for a greener future
Schneider Electric South Africa IT in Manufacturing
Buildings are no longer passive consumers of power. Structures of almost every size are evolving into dynamic energy ecosystems capable of generating, storing and distributing their own electricity. Forming part of this exciting transformation are microgrids.

Read more...
Traditional data centres are not fit for purpose
IT in Manufacturing
Traditional data centre designs are falling short, with nearly half of IT leaders admitting their current infrastructure does not support energy or carbon-reduction goals. New research commissioned by Lenovo reveals that data centre design must evolve to future-proof businesses.

Read more...
AI agents for digital environment management in SA
IT in Manufacturing
The conversation about artificial intelligence in South Africa has shifted rapidly over the past year. Among the technologies changing the pace of business are AI agents - autonomous, task-driven systems designed to operate with limited human input.

Read more...
AI-powered maintenance in future-ready data centres
Schneider Electric South Africa IT in Manufacturing
The data centre marketplace often still relies on outdated maintenance methods to manage mission-critical equipment. Condition-Based Maintenance (CBM) is powered by AI and is fast becoming a necessity in ensuring both competitiveness and resilience.

Read more...
Powering up data centre mega development
IT in Manufacturing
Parker Hannifin has secured a major contract to supply key equipment for nearly 30 aeroderivative gas turbines powering a new hyperscale data centre in Texas.

Read more...
Building resilient supply chains through smarter e-procurement
RS South Africa IT in Manufacturing
In a time of constant disruption, from supply chain uncertainty to rising operational costs, businesses that embrace digital procurement are better positioned to stay competitive and resilient.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved