IT in Manufacturing


Automation markup language emerges

August 2012 IT in Manufacturing

While companies in the manufacturing industries face many challenges, reducing costs and time-to-market both appear near the top of the list for many CEOs. Since engineering speed and efficiency can reduce the time it takes to bring new products to market and engineering and commissioning costs typically represent a considerable percentage of a manufacturing company’s overall cost structure, virtually all manufacturers today have invested in engineering tools.

Unfortunately, while modern engineering tools can help reduce engineering time and effort and increase productivity to a significant degree, tools for different engineering disciplines often lack interoperability due to incompatible data formats. This means that the same data must be entered multiple times into the different engineering tools used across engineering disciplines. These include mechanical plant engineering, electrical design, process engineering, process control engineering, HMI development, PLC programming, and robotics programming. This increases time, cost and effort, and introduces the potential for errors.

The goal of the European-based AutomationML initiative is to provide a common format, enabling data exchange and interoperability between the disparate engineering tools.

The problem of data exchange between engineering tools

As companies use many different engineering tools to work on an object in the production process, seamless exchange of data between these tools is of paramount importance. But different engineering tools have different, often incompatible, data formats. This makes it difficult, if not impossible, to exchange data.

A common solution is to write custom export and import tools to transfer the data files from the source engineering tool into the target engineering tool using pair-wise data exchange. The problem with pair-wise data exchanges between engineering tools is that the file export/import between the different engineering tools gets confusing. This approach also consumes significant engineering time, since custom exporters and importers need to be written for each and every engineering tool. Obviously, this also requires engineers to understand the different data formats for the wide variety of engineering tools used across most manufacturing companies.

Different approaches possible

A successful solution to the problem of exchanging data between different engineering tools must be easy, fast, scalable and backwards traceable. One possible approach, a common database, would require that multiple vendors develop their engineering tools in a harmonised manner. While this would be very helpful for users, it would also tend to inhibit innovation.

Another approach is to have a common data format for all engineering tools. This might be achieved through semantic standardisation, but also has disadvantages. It would require the feedback from users and tool vendors, but the tool vendors prefer to wait for the standardisation process to be completed.

Data exchange with AutomationML

The Automation Markup Language (or AutomationML) interface enables data from different engineering tools to be exported and imported without confusing and time-consuming procedures.

AutomationML started in 2006 as an industry consortium led by Daimler. The AutomationML association was founded in 2009 by Daimler, ABB, Siemens, the University of Magdeburg, the Fraunhofer IITB, NetAllied Systems, and Zühlke Engineering. The association now has 25 member companies in Europe and is growing. The purpose of the association is further to develop an open and licence-free interface to improve the engineering process via standardised data exchange between engineering tools.

Recent developments

In May 2012 the new engine, AutomationML 2.01, was released together with a new editor that simplifies the creation of exporters and importers. At a recent user conference in Germany, the AutomationML association presented and explained its new tools and engine to generally favourable response. This should help increase user support for the initiative.

How does AutomationML work?

AutomationML works as a common data format. Exchanging data between different engineering tools is accomplished by simply exporting the data into the common format. The private data of an engineering tool is exported to a neutral data format that other engineering tools can import and use. To export data, each exporting engineering tool needs to have an exporter that ‘translates’ the private data of the source engineering tool into the neutral data format.

To import the data from the neutral data format, each importing engineering tool needs an importer. This importer ‘translates’ the neutral data format into the language of the importing engineering tool.

As complex as this sounds, compared to having to write exporters and importers for every engineering tool language used across the engineering process, using the AutomationML format can save a lot of time. Users of AutomationML say that they were able to configure exports and imports within a few hours, depending on the amount of data. The AutomationML Association provides app-like tools that make it easy for users to configure the needed exporters and importers.

Can AutomationML support collaborative functionality?

AutomationML can help support collaborative processes. Intermediate software based on AutomationML manages data exchange, tracks responsibilities, and mediates and exchanges data.

ARC Advisory Group believes that an intermediate tool built on AutomationML could enhance collaboration. The AutoCAD user owns the data. He or she allows parts of his/her private data from this engineering tool to be edited by others and sets rights through the intermediate software. Users could also trace who has made which changes by using version management in the intermediate software. The AutomationML association can provide users with this kind of intermediate software.

Not appropriate for all situations

ARC expects that companies that use a variety of different engineering tools and are currently using manual data exchange between these tools could potentially gain significant benefits from AutomationML, particularly if their goals include being able to reduce the time required to bring products to market and the associated engineering effort and costs.

However, both the source and target engineering tools must meet some preconditions. For instance, source data must be exportable into AutomationML. To this end, the AutomationML association must provide users with a tool to determine whether or not their current engineering tools fit this important precondition to the benefits of AutomationML.

For more information contact Paul Miller, ARC Advisory Group, +1 781 471 1126, [email protected], www.arcweb.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Sustainable energy management
Siemens South Africa IT in Manufacturing
Utilising its innovative ONE approach technology, Siemens provides complete transparency on resource consumption and offers data-driven optimisation recommendations for sustainable energy management.

Read more...
Paving the way for a carbon-neutral future in South Africa
IT in Manufacturing
At ABB Electrification, we believe the infrastructure of the future must do more than support daily operations, it must anticipate them. We are committed to building intelligent systems that connect and optimise infrastructure across sectors.

Read more...
Africa’s hidden AI advantage
IT in Manufacturing
Through my work implementing AI systems across three continents, I’ve become convinced that Africa’s unique context demands urgent AI adoption. Successful implementation requires local expertise to understand resource constraints as design parameters to create the innovations that make technology truly work under real-world conditions.

Read more...
Siemens Xcelerator empowers space-tech pioneer, Skyroot Aerospace
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software has announced that Skyroot Aerospace, a leading private space launch service company in India, has adopted Polarion software from the Siemens Xcelerator portfolio to digitally transform its software development processes and enhance efficiency as it aims to accelerate access to space for its customers worldwide.

Read more...
Water is running out, is your ESG strategy ready?
IT in Manufacturing
Water is one of the most critical yet undervalued resources in modern business. Water stewardship asks businesses to understand their water footprint across the entire value chain and to engage with others who share the same water resources.

Read more...
Cybersecurity in 2025: Six trends to watch
Rockwell Automation IT in Manufacturing
Rockwell Automation’s 10th State of Smart Manufacturing report finds that cybersecurity risks are a major, ever-present obstacle, and are now the third-largest impediment to growth in the next 12 months.

Read more...
The state of the smart buildings market in 2025
IT in Manufacturing
Smart buildings are entering a transformative phase, driven by sustainability goals, technological innovation and evolving user expectations. According to ABI Research’s latest whitepaper, the sector is undergoing a strategic overhaul across key areas like retrofitting, energy efficiency, data-driven operations and smart campus development.

Read more...
Digital twin for Bavaria’s National Theatre
Siemens South Africa IT in Manufacturing
Siemens and the Bavarian State Opera are digitalising the acoustics in Bavaria’s National Theatre in Munich, Germany. The result is a digital twin that simulates sound effects, orchestral setups and venue configurations in a realistic 3D acoustic model so that musicians, the director and conductors can assess a concert hall’s acoustics even before the first rehearsal.

Read more...
How AI can help solve South Africa’s water crisis
IT in Manufacturing
Climate change, ageing infrastructure, pollution and unequal access are putting intense pressure on the country’s water systems. A powerful question arises: “Can artificial intelligence help us change course?”

Read more...
Backup has evolved, but has your strategy?
IT in Manufacturing
With cyber threats rising and compliance standards tightening, South African organisations are under growing pressure to revisit their data protection strategies. The era of treating backups as a box-ticking exercise is over.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved