IT in Manufacturing


Automation markup language emerges

August 2012 IT in Manufacturing

While companies in the manufacturing industries face many challenges, reducing costs and time-to-market both appear near the top of the list for many CEOs. Since engineering speed and efficiency can reduce the time it takes to bring new products to market and engineering and commissioning costs typically represent a considerable percentage of a manufacturing company’s overall cost structure, virtually all manufacturers today have invested in engineering tools.

Unfortunately, while modern engineering tools can help reduce engineering time and effort and increase productivity to a significant degree, tools for different engineering disciplines often lack interoperability due to incompatible data formats. This means that the same data must be entered multiple times into the different engineering tools used across engineering disciplines. These include mechanical plant engineering, electrical design, process engineering, process control engineering, HMI development, PLC programming, and robotics programming. This increases time, cost and effort, and introduces the potential for errors.

The goal of the European-based AutomationML initiative is to provide a common format, enabling data exchange and interoperability between the disparate engineering tools.

The problem of data exchange between engineering tools

As companies use many different engineering tools to work on an object in the production process, seamless exchange of data between these tools is of paramount importance. But different engineering tools have different, often incompatible, data formats. This makes it difficult, if not impossible, to exchange data.

A common solution is to write custom export and import tools to transfer the data files from the source engineering tool into the target engineering tool using pair-wise data exchange. The problem with pair-wise data exchanges between engineering tools is that the file export/import between the different engineering tools gets confusing. This approach also consumes significant engineering time, since custom exporters and importers need to be written for each and every engineering tool. Obviously, this also requires engineers to understand the different data formats for the wide variety of engineering tools used across most manufacturing companies.

Different approaches possible

A successful solution to the problem of exchanging data between different engineering tools must be easy, fast, scalable and backwards traceable. One possible approach, a common database, would require that multiple vendors develop their engineering tools in a harmonised manner. While this would be very helpful for users, it would also tend to inhibit innovation.

Another approach is to have a common data format for all engineering tools. This might be achieved through semantic standardisation, but also has disadvantages. It would require the feedback from users and tool vendors, but the tool vendors prefer to wait for the standardisation process to be completed.

Data exchange with AutomationML

The Automation Markup Language (or AutomationML) interface enables data from different engineering tools to be exported and imported without confusing and time-consuming procedures.

AutomationML started in 2006 as an industry consortium led by Daimler. The AutomationML association was founded in 2009 by Daimler, ABB, Siemens, the University of Magdeburg, the Fraunhofer IITB, NetAllied Systems, and Zühlke Engineering. The association now has 25 member companies in Europe and is growing. The purpose of the association is further to develop an open and licence-free interface to improve the engineering process via standardised data exchange between engineering tools.

Recent developments

In May 2012 the new engine, AutomationML 2.01, was released together with a new editor that simplifies the creation of exporters and importers. At a recent user conference in Germany, the AutomationML association presented and explained its new tools and engine to generally favourable response. This should help increase user support for the initiative.

How does AutomationML work?

AutomationML works as a common data format. Exchanging data between different engineering tools is accomplished by simply exporting the data into the common format. The private data of an engineering tool is exported to a neutral data format that other engineering tools can import and use. To export data, each exporting engineering tool needs to have an exporter that ‘translates’ the private data of the source engineering tool into the neutral data format.

To import the data from the neutral data format, each importing engineering tool needs an importer. This importer ‘translates’ the neutral data format into the language of the importing engineering tool.

As complex as this sounds, compared to having to write exporters and importers for every engineering tool language used across the engineering process, using the AutomationML format can save a lot of time. Users of AutomationML say that they were able to configure exports and imports within a few hours, depending on the amount of data. The AutomationML Association provides app-like tools that make it easy for users to configure the needed exporters and importers.

Can AutomationML support collaborative functionality?

AutomationML can help support collaborative processes. Intermediate software based on AutomationML manages data exchange, tracks responsibilities, and mediates and exchanges data.

ARC Advisory Group believes that an intermediate tool built on AutomationML could enhance collaboration. The AutoCAD user owns the data. He or she allows parts of his/her private data from this engineering tool to be edited by others and sets rights through the intermediate software. Users could also trace who has made which changes by using version management in the intermediate software. The AutomationML association can provide users with this kind of intermediate software.

Not appropriate for all situations

ARC expects that companies that use a variety of different engineering tools and are currently using manual data exchange between these tools could potentially gain significant benefits from AutomationML, particularly if their goals include being able to reduce the time required to bring products to market and the associated engineering effort and costs.

However, both the source and target engineering tools must meet some preconditions. For instance, source data must be exportable into AutomationML. To this end, the AutomationML association must provide users with a tool to determine whether or not their current engineering tools fit this important precondition to the benefits of AutomationML.

For more information contact Paul Miller, ARC Advisory Group, +1 781 471 1126, [email protected], www.arcweb.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Looking into the future of machine vision
Omron Electronics IT in Manufacturing
Artificial intelligence (AI) is driving a significant transformation in all areas of industrial automation, and machine vision is no exception. Omron’s AI-powered machine vision systems seamlessly integrate state-of-the-art algorithms, enabling machines to analyse and interpret visual data meticulously.

Read more...
Driving digital transformation in the truck industry
Siemens South Africa IT in Manufacturing
Tatra Trucks, a leading truck manufacturer in Czechia, has adopted the Siemens Xcelerator portfolio of industry software including Teamcenter software for product lifecycle management and the Mendix low code platform to help increase production volume and strengthen its ability to manufacture vehicles that meet specific customer requirements.

Read more...
Opinion piece: Digital twins in manufacturing – design, optimise and expand
Schneider Electric South Africa IT in Manufacturing
Digital twin technology can help create better products, fast. It can also transform the work of product development. This strong statement from McKinsey reinforces how far digital twins have come in manufacturing.

Read more...
Asset tracking is key to driving operational excellence and sustainable growth
Schneider Electric South Africa IT in Manufacturing
Asset tracking plays a critical role in the success of industrial businesses. By effectively managing and monitoring assets, companies can optimise their operations, ensuring that resources are used efficiently. This leads to improved productivity and reduced costs.

Read more...
Siemens democratises AI-driven PCB design for small and medium electronics teams
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software is making its AI-enhanced electronic systems design technology more accessible to small and mid-sized businesses with PADS Pro Essentials software and Xpedition Standard software.

Read more...
Predicting and preventing cyber-attacks with AI and generative AI
IT in Manufacturing
The speed at which cyber threats are evolving is unprecedented. As a result, companies need to implement state-of-the-art technology to protect their data and systems.

Read more...
Real-world lessons in digital transformation
IT in Manufacturing
Synthesis has helped businesses across multiple industries with their digital transformation by solving their unique integration challenges.

Read more...
Enhancing cyber security for industrial drives
Siemens South Africa IT in Manufacturing
The growing connection between production networks and office networks as part of IT/OT integration and the utilisation of IoT have many benefits for industrial companies. At the same time, they also increase the risk of cyber threats. Siemens ensures that your know-how and plants are protected at all times.

Read more...
Immersion cooling systems for data centres
IT in Manufacturing
The demand for data centres in Africa is growing. The related need for increasing rack densities brings with it escalating cooling requirements.

Read more...
Transforming pulp and paper with automation and digitalisation
ABB South Africa IT in Manufacturing
The pulp and paper industry in South Africa is undergoing a significant transformation from traditional manual processes to embracing automation technologies. Automation in pulp and paper mills aims to improve various production stages, from raw material preparation to final product creation.

Read more...