Electrical Power & Protection


Can IR windows be considered ‘arc resistant’?

March 2017 Electrical Power & Protection

It is easy for an end-user to be misinformed about the specifications of an IR window because there is often confusion in the market about parameters such as arc resistance, IP ratings and environmental stability, in respect of these particular devices. This is particularly true for IR windows manufactured from a crystal substrate, since these are often perceived as being stronger than steel.

Completing an arc containment test on switchgear is required to confirm that the design meets the IEEE and IEC standards, and, if IR windows were installed in the piece of equipment under test, then, if successful, an IR window manufacturer could claim that the window met the IEEE or IEC arc containment requirements for that particular piece of equipment for that particular test. However, a claim of all-encompassing ‘arc resistance’ for that particular IR window would be misleading.

What do the regulations say?

Whilst there are regulations from UL and CSA on IR windows fitted in electrical enclosures up to 600 V, there are no specific regulations from IEEE or IEC. There are however IEEE regulations on ‘visual viewing panes’, which have been in place since the inception of these standards. Like all standards, these have evolved with suppliers’ ability to provide superior, less expensive materials and manufacturing options.

A common theme for all visual viewing pane testing is impact and load testing. This requires the viewing pane to meet a minimum impact and load test without cracking, shattering or dislodging from its housing.

The regulation requires visual viewing panes to withstand impact and load per IEEE C37.20.2 Section a.3.6. Unlike UL, this IEEE standard does not differentiate between the types of material, or give exemptions to crystal infrared windows. Instead it clearly specifies that any transparent material covering an observation opening and forming a part of the enclosure should be reliably secured in such a manner that it cannot be readily displaced in service and not shatter, crack, or become dislodged when both sides of the viewing panes in turn are subjected to impact and load.

This testing method has been in place for many years and is the accepted method for visual viewing panes, so why not use the same test for IR windows? Well, the fact is that the fluoride-based crystal IR windows cannot pass any form of impact, so the IR window manufacturers lean more towards the UL regulation UL1558 for impact and load testing.

Two different test criteria

UL 1558 is the impact and load standard for visual viewing and IR window testing. This test is identical to the IEEE C37.20.2 Section a.3.6 test, except they doubled the load and impact test.

On the face of it, this sounds perfect. But herein lies the rub, unlike the IEEE test, UL1558 has two different test criteria: one with covers fitted and closed on the IR window, and one for covers opened or removed.

When provided with a cover, results are considered to be acceptable if the assembly prevents insertion of a 13 mm diameter rod at the conclusion of the test. When no cover is provided, the results are considered acceptable if the view pane does not shatter, crack or become dislodged (as with the IEEE test).

Testing IR viewing windows with the metal cover in place is in conflict with the intent of the standard, since the crystal lens will shatter during the test. This renders the window ‘electrically unsafe’ because it fails the IP20 requirement that stipulates the largest allowable hole size in the cabinet is 13 mm. However, the window passes the test due to the fact that a steel rod of that diameter cannot be passed through the metal or plastic cover! If this standard is to be used to certify an IR window, then it is important to insist that the UL1558 test be completed with the covers open, and then meets the minimum test requirement by not shattering, cracking or dislodging, during or after the test.

When it comes to IR windows, the user needs to be more concerned with the mechanical stability of the windows, as a component within the switchgear assembly, and that it meets the minimum requirements for impact and load testing, rather than being misled that the window is somehow arc resistant.

For more information contact R&C Instrumentation, 086 111 4217, info@randci.co.za, www.randci.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Power supplies for building automation
June 2020, Phoenix Contact , Electrical Power & Protection
The new Step Power power supplies from Phoenix Contact are specifically tailored to the needs of modern building automation. With their comprehensive approval package, which includes the standard ...

Read more...
Skid-mounted dry-type transformer
June 2020 , Electrical Power & Protection
In a specialised application on a coal mine, Trafo Power Solutions recently supplied a dry-type transformer mounted on a mobile skid. “The harsh environment of a coal mine required us to specially ...

Read more...
Customised transformers for renewables and beyond
June 2020 , Electrical Power & Protection
A focus on application engineering allows Trafo Power Solutions to supply customised dry-type transformers for a range of sectors including renewable energy. “We begin at the proposal stage by engaging ...

Read more...
Closed panel electrical inspection
July 2020, R&C Instrumentation , Maintenance, Test & Measurement, Calibration
When electrical distribution equipment fails, the results can be catastrophic to a company as workplace injuries and fatalities could occur. A company’s profit margin can be negatively impacted by unscheduled ...

Read more...
Ratio pyrometer: theory and applications
June 2020, R&C Instrumentation , Temperature Measurement
There are many applications where a standard one-colour thermometer reads the temperature incorrectly. These include:    • Small objects (too small to fill the cone-of-vision). • Dust, smoke or steam, ...

Read more...
Electrical certificate of compliance (COC) for instrumentation: non-hazardous installations
June 2020, Everest Equipment & Control , Electrical Power & Protection
An instrument and control installation’s scope of work often never makes a request for a certificate of compliance: it is assumed to be an electrical function and hence many installations are non-compliant. ...

Read more...
Intrinsically safe temperature monitoring in Ex areas
May 2020, R&C Instrumentation , Temperature Measurement
All models of the versatile Raytek MI3 Compact series infrared transmitters are now also available as intrinsically safe versions for use in hazardous environments. Intrinsically safe devices prevent ...

Read more...
Five tips to manage energy use while staying at home
May 2020 , Electrical Power & Protection
Covid-19 continues to impact many aspects of our lives. Many are now required to stay at home in an effort to curb the spread of the pandemic. One of the many implications of staying at home will be the ...

Read more...
Profiling in paint cure ovens
April 2020, R&C Instrumentation , Temperature Measurement
Datapaq’s solution for monitoring temperatures in furnaces, ovens and dryers.

Read more...
New fibre-optic pyrometer
April 2020, R&C Instrumentation , Temperature Measurement
As part of their Endurance range, Raytek and Ircon combined, have introduced the Endurance fibre-optic infrared thermometer. These pyrometers have an external sensor head attached via a fibre-optic ...

Read more...