IT in Manufacturing


NIST finds wireless performance consistent across 5G mmWave bands

September 2023 IT in Manufacturing

Settling a key dispute in the wireless communications field, researchers at the US National Institute of Standards and Technology (NIST) found that transmission performance is consistent across different bands of the millimetre-wave (mmWave) spectrum targeted for high-speed, data-rich 5G systems.

Wireless systems are moving to the mmWave spectrum at 10-100 GHz, above crowded cellular frequencies and early 5G systems around 3 GHz. System operators tend to prefer lower bands of the new mmWave spectrum. One reason is that they are influenced by a formula that says more signals are lost at higher frequencies due to smaller wavelengths, resulting in a smaller useful antenna area. But until now, measurements of this effect by many organisations have disagreed over whether this is true.

NIST researchers developed a new method to measure frequency effects, using the 26,5-40 GHz band as a target example. After extensive study in the laboratory and two real-world environments, NIST results confirmed that the main signal path – over a clear ‘line of sight’ between transmitter and receiver – does not vary by frequency, a generally accepted thesis for traditional wireless systems but until now not proven for the mmWave spectrum. The results are described in a new paper [hyperlink to https://ieeexplore.ieee.org/document/9759479].

The team also found that signal losses in secondary paths – where transmissions are reflected, bent or diffused into clusters of reflections – can vary somewhat by frequency, depending on the type of path. Reflective paths, which are the second strongest and critical for maintaining connectivity, lost only a little signal strength at higher frequencies. The weaker bent and diffuse paths lost a bit more. Until now, the effects of frequency on this so-called multipath were unknown.

“This work may serve to demystify many misconceptions about propagation around higher frequencies in 5G and 6G,” NIST electrical engineer Camillo Gentile said. “In short, while performance will be worse at higher frequencies, the drop in performance is incremental, so we do expect the deployment at 5G and eventually at 6G to be successful.”

The NIST method emphasises innovative measurement procedures and enhanced equipment calibration to make sure only the transmission channel is measured. The researchers used NIST’s SAMURAI (Synthetic Aperture Measurement UnceRtainty for Angle of Incidence) channel sounder, which supports design and repeatable testing of 5G mmWave devices with unprecedented accuracy across a wide range of signal frequencies and scenarios. The NIST system is unique in that antenna beams can be steered in any direction for precise angle-of-arrival estimates.

NIST’s main innovations in the new study, as discussed in the paper, were calibration procedures to remove the effects of channel sounder equipment from the measurements, extension of an existing algorithm to determine from a single measurement how individual paths vary by frequency, and studies in an industrial control centre and a conference room to classify the types of paths involved and determine any frequency effects.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Platform for integrated digital mine management
IT in Manufacturing
Becker Mining launches platform for integrated digital mine management

Read more...
The reimagined building of today and tomorrow
Schneider Electric South Africa IT in Manufacturing
Retrofitting a building is a truly practical way of achieving energy efficiency, compliance and long-term competitiveness.

Read more...
The Konecranes portal, a benchmark in data supply
IT in Manufacturing
The newly launched Konecranes Portal takes online communications to the next level through its single point of access to its digital customer platforms.

Read more...
End-to-end security across IT and OT environments
IT in Manufacturing
Siemens is collaborating with Accenture to offer 24/7 managed IT/OT security operations centre services, providing end-to-end security across IT and OT environments.

Read more...
Mitigating cybersecurity threats
IT in Manufacturing
Wesco is a world leader in electrical, communications and utility distribution and supply chain services and a member of the Rockwell Automation PartnerNetwork programme. To build their cybersecurity portfolio, Wesco turned to two Rockwell Automation offerings, a security posture survey and threat detection services.

Read more...
MRO inventory optimisation
RS South Africa IT in Manufacturing
Maintenance, repair and operations inventory optimisation is not just a technical concern, it is a strategic priority for industries that depend on operational reliability and efficiency.

Read more...
Liquid cooling solutions for hyperscale data centre environments
Schneider Electric South Africa IT in Manufacturing
Schneider Electric has unveiled its world-leading portfolio of end-to-end liquid cooling solutions for hyperscale, colocation and high-density data centre environments, engineered to enable the AI factories of the future.

Read more...
Corrosion in data centre cooling systems
IT in Manufacturing
Taking proactive steps to fight corrosion is critical to maintaining healthy cooling towers alongside data centres.

Read more...
Smart assistant supports troubleshooting and analyser maintenance
Siemens South Africa IT in Manufacturing
The Siemens Industrial Copilot for process analyser technology is a smart, offline assistant that supports technicians in troubleshooting and maintaining analysers.

Read more...
AI and the smart factory
Schneider Electric South Africa IT in Manufacturing
Imagine walking into a factory where machines can think ahead, predict problems before they happen, and automatically make adjustments to realise peak performance. This isn’t science fiction; it’s happening right now as AI transforms how we run industrial operations.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved