IT in Manufacturing


The role of AI in industrial plants

June 2023 IT in Manufacturing

The average modern industrial plant uses less than 27% of the data it generates, according to industry experts at the ARC Advisory Group, Boston. Typically, the remaining 73% of data – much of it produced by plant process-control systems as high-frequency operational control (OT) data – is seldom used. Large volumes of other valuable functional data resides in a company’s general business or IT systems, and still more in the engineering systems (ET), covering specific design information for various assets. In addition to being rarely used, all this data is normally scattered about in separate silos and networks that support little or no cross-referencing.

“This is where the golden opportunity lies, which we can now unlock with new software platforms that simplify better convergence and analysis of OT/IT/ET data,” says Charles Blackbeard, business development manager of ABB Ability Digital. The benefits can be impressive, such as higher production rates from existing assets, less downtime because of predictive maintenance practices, safer operation, reduced energy and other raw material inputs, and lower environmental impact.

Improved convergence of OT/IT/ET data means bringing together previously separate elements, which have now been streamlined and integrated. To achieve this, all OT, IT, and ET data is accumulated in a data lake. Next, related data is contextualised and stored in an industry-specific data model, such as paper making or plastic extruding. Then advanced analytics and industrial AI algorithms are applied to identify correlations not previously visible.

“Industrial AI can play a major role in identifying these patterns and making process predictions,” says Blackbeard. The terms AI and ML are often used interchangeably, which can be confusing at times. AI is the overarching science of making machines and physical systems smarter by embedding artificial intelligence in them. ML is a subset of AI that involves systems gaining knowledge over time through self-learning to become smarter and more predictable, without human intervention.

“As an example, consider a motor, an essential and omnipresent asset in any plant. The motor generates a lot of operational data such as temperature, pressure and flow rate data from various stages of the production process. To acquire a holistic overview of the motor, we integrate information from all these systems and store the relevant pieces in a contextualised data model. This allows us to visualise and activate optimum equipment operation for the best overall process results,” explains Blackbeard.

In a large plant, there can be hundreds of such assets performing many functions and running under different operating conditions with varied design parameters, all with data stored in various systems. Widespread OT/IT/ET integration and contextualisation is therefore critical to obtain a complete view of the plant and carry out valuable analytical tasks that improve operations, asset integrity and performance management, safety, sustainability, and supply chain functions. What emerges are patterns that accurately predict future behaviour, allowing improved process performance.

“We have been using AI/ML to deliver a higher degree of prediction accuracy and optimisation to operations, processes and assets. Combining AI with deep industrial domain expertise empowers operators to run their industrial processes safely, more effectively and more sustainably,” notes Blackbeard. He adds that there are several barriers, perceived and otherwise, that hinder the implementation of advanced analytics. The most common reason for hesitation is the perceived complexity. People mistakenly think it is much more difficult to achieve than it is. Another explanation is the incorrect belief that, to use big data, you must make massive capital expenditures, because it is an ‘all or nothing’ undertaking.

“But it is not. You can start with small steps,” points out Blackbeard. Other reasons might be lack of cooperation between OT, IT and ET people, and just generally slow adoption of new digital tools in many industrial sectors. The fact is that it is easy to join this digital maturity journey, no matter where you are, using data and signals that are already available in your process control, business and engineering systems,” he concludes.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Schneider Electric’s Five-Pillar Strategy takes the guesswork out of equip
Schneider Electric South Africa IT in Manufacturing
Schneider Electric’s Field Service Cycle, otherwise known as the Five-Pillar Strategy, is a structured approach to managing the lifecycle of equipment to prolong asset lifespan while reducing the total cost of ownership for customers.

Read more...
Enhancing operational safety and efficiency through advanced risk-based modelling
IT in Manufacturing
Now, more than ever, capital and operational cost can be reduced while enhancing operational safety and increasing production uptime by applying transformative methods such as Computational Fluid Dynamics modelling.

Read more...
Laying the groundwork in IT/OT
IT in Manufacturing
In the realm of manufacturing, the core mandate is to deliver value to stakeholders. For many in the industry, this is best achieved through a risk-averse approach. Only upon establishing a robust foundation should a business consider venturing into advanced optimisation or cutting-edge technological innovations such as industrial AI.

Read more...
Family of analysers for smart and efficient chlorine measurement
ABB South Africa Sensors & Transducers
ABB has launched ChloroStar, a family of sensors, transmitters and accessories for accurate and reliable chlorine measurement and analysis that enable users in the water, wastewater and other industries to control chlorine more efficiently, enhancing treatment and increasing process uptime.

Read more...
Looking into the future of machine vision
Omron Electronics IT in Manufacturing
Artificial intelligence (AI) is driving a significant transformation in all areas of industrial automation, and machine vision is no exception. Omron’s AI-powered machine vision systems seamlessly integrate state-of-the-art algorithms, enabling machines to analyse and interpret visual data meticulously.

Read more...
Driving digital transformation in the truck industry
Siemens South Africa IT in Manufacturing
Tatra Trucks, a leading truck manufacturer in Czechia, has adopted the Siemens Xcelerator portfolio of industry software including Teamcenter software for product lifecycle management and the Mendix low code platform to help increase production volume and strengthen its ability to manufacture vehicles that meet specific customer requirements.

Read more...
Opinion piece: Digital twins in manufacturing – design, optimise and expand
Schneider Electric South Africa IT in Manufacturing
Digital twin technology can help create better products, fast. It can also transform the work of product development. This strong statement from McKinsey reinforces how far digital twins have come in manufacturing.

Read more...
Asset tracking is key to driving operational excellence and sustainable growth
Schneider Electric South Africa IT in Manufacturing
Asset tracking plays a critical role in the success of industrial businesses. By effectively managing and monitoring assets, companies can optimise their operations, ensuring that resources are used efficiently. This leads to improved productivity and reduced costs.

Read more...
Siemens democratises AI-driven PCB design for small and medium electronics teams
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software is making its AI-enhanced electronic systems design technology more accessible to small and mid-sized businesses with PADS Pro Essentials software and Xpedition Standard software.

Read more...
Predicting and preventing cyber-attacks with AI and generative AI
IT in Manufacturing
The speed at which cyber threats are evolving is unprecedented. As a result, companies need to implement state-of-the-art technology to protect their data and systems.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved