System Integration & Control Systems Design


Control loop: Case History 137 - The cycling pressure loop.

July 2014 System Integration & Control Systems Design

I have written much in the past about the peculiar problems inherent to integrating processes. The most commonly found of these are level controls, but some pressure control loops, particularly those with compressible fluids like steam and gas, are often also integrating.

Problems associated with integrating processes

Integrating processes are inherently unstable and can easily run away. Controlling them in manual can be tiring on operators, making onerous demands on their time, so they really need to run in automatic. Unfortunately very few people have been taught to understand the characteristics of integrating processes, and often have no real idea on how to tune them.

Integrating processes running in automatic are often cycling with periods that can be really long. The two most probable reasons for the cycling are:

* Bad tuning.

* An integrating process that has hysteresis on the valve and that has been tuned with P+I parameters on the controller will always cycle continuously.

A practical case

The example here is of a critical pressure control loop on a distillation column that was cycling continuously. This interacted with other controls on the same column and also caused cycling on other downstream columns.

Figure 1 is the closed loop test. It shows the process in a con­tinuous slow cycle with a period of approximately 6 minutes. Setpoint changes were made, firstly up, and then back down again. The controller is doing quite a good job, keeping the process within ±1% of setpoint, but the problem is that to achieve this, the controller is working really hard and the output is cycling with an amplitude of about 10%. This was badly affecting other downstream loops.

Figure 1.
Figure 1.

An attempt was made to stop the cycling by placing the controller in manual. To do this and keep the PV constant it is necessary for the PD (controller output) to be at the balance point, which is where the valve position is such that the output of the process is equal to the input of the process. (For example in a level control the flow into the vessel must equal the output flow from the vessel if the level is to stay constant.)

In Figure 2 it can be seen that when the controller was put into manual the pressure PV started ramping downwards. The PD was the reduced in steps to try and get the process to a balance point. However, after moving the PD down by 14% the PV ramp still remained constant which indicated that the valve was not moving, and must be sticking. A further 10% step was made, and then the PV ramp reversed and moved upwards.

Figure 2.
Figure 2.

The PD was then stepped upwards by 15%, but the ramp still carried out at the same rate. A further 10% step caused it to start moving the other way. The controller was then put into automatic with a P only control. This is equivalent to the control by a ball valve which always finds a balance point – normally an easy way to find the balance point. However, in this case the level kept on ramping down at a constant rate. After the PD had moved down some 27% under the action of the P term, the ramp suddenly reversed, which suggested the fact that the valve was suffering from approximately 27% hysteresis. This of course is unacceptable for a control valve which should have a maximum of 1% hysteresis.

Conclusion

To confirm the diagnosis, and to try and determine the magnitude of the hysteresis more accurately, a second test was performed in manual (open loop). This is shown in Figure 3. This time smaller steps were made on the PD, and it was found that at least 17% hysteresis actually exists on the valve.

Figure 3.
Figure 3.

This explains exactly why this loop is cycling. Basically the output of the controller has to move back through 17% every time it has to reverse the valve, and the valve then jumps so that a stable balance point can never be obtained.

Michael Brown is a specialist in control loop optimisation with many years of experience in process control instrumentation. His main activities are consulting, and teaching practical control loop analysis and optimisation. He gives training courses which can be held in clients’ plants, where students can have the added benefit of practising on live loops. His work takes him to plants all over South Africa and also to other countries. He can be contacted at Michael Brown Control Engineering, +27(0)82 440 7790, [email protected], www.controlloop.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Loop Signature 30: Nonlinearity in control loops (Part 1)
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
If nonlinearity occurs it means that if one is to carry on controlling with the same response to changes in load or setpoint, then the tuning of the controller will also need to be adjusted to meet the new conditions.

Read more...
Control system upgrade: Smelting
SAM Systems Automation & Management System Integration & Control Systems Design
Systems Automation & Management recently completed a major control system upgrade in the smelting industry. The project was delivered on budget and achieved a positive ROI for the client.

Read more...
Gottwald drives upgrade: Ports and harbours
Abacus Automation System Integration & Control Systems Design
In the ports and harbours sector, Abacus Automation completed a significant modernisation of a Gottwald crane, improving both operational reliability and serviceability.

Read more...
Mining industry upgrade: From ageing systems to maximum capacity
System Integration & Control Systems Design
Iritron recently undertook a major upgrade in the mining sector, focusing on washing and screening plants, jigs, thickeners, tailings, water systems, conveyors and reclaimers.

Read more...
Agogo Integrated West Hub Project: FPSO/subsea offshore Angola
Moore Process Controls System Integration & Control Systems Design
The Agogo Integrated West Hub project represents a historic milestone in the FPSO and subsea industry, achieving first oil offshore of Angola. This project is the first FPSO deployment since ANPG’s establishment in 2019, and the first major project for Azule Energy since 2022.

Read more...
Integrated Robotics and Control Systems Deliver 45% Production Boost at Aquazania Waters Project and Industry
Process Dynamics System Integration & Control Systems Design
Project and Industry    Process Dynamics designed and commissioned a state-of-the-art Reverse Osmosis (RO) water purification and automated bottle filling plant for Aquazania Waters in Linbro Park, Johannesburg. ...

Read more...
Case History 199: Another example of the effectiveness of cascade control
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
In my last article I wrote about how cascade control systems can effectively overcome valve problems. This article gives another example of how a temperature control was able to perform well, in spite of really severe valve problems.

Read more...
Digital transformation from the edge
DirectLogic Automation System Integration & Control Systems Design
Edge-enabled PLCs are an accessible and affordable way for most users to collect and create value from use field-sourced data.

Read more...
Powering southern Africa’s industrial evolution for over five decades
Oilpower System Integration & Control Systems Design
Established in 1974, Oilpower is a recognised name in South Africa’s hydraulic and pneumatic sector. What started as a small, family-run business has matured into a highly structured operation with specialised teams, experienced engineers and a reputation for technical excellence and reliability. Oilpower is celebrating its 50th anniversary this year

Read more...
Case History 198: Cascade control overcomes valve problems
Michael Brown Control Engineering Fieldbus & Industrial Networking
A large petrochemical refinery asked me to perform an audit on several critical base layer control loops. This article deals with a problem found on a valve controlling the flow of fuel to a heat exchanger.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved