Analytical Instrumentation & Environmental Monitoring


Sliding gate valve reins in costs for steam systems

June 2013 Analytical Instrumentation & Environmental Monitoring

The level of quality attainable in controlling a steam plant is heavily dependent on the dynamic characteristics of the system comprising the control element, actuator and controller. The control parameters for sliding gate valves relating to dynamic behaviour are clearly superior to those for conventional control valves. As a result, the highly responsive dynamics not only improve the control quality but also form the basis for control circuits with very short reaction times. This has proved to be the key factor in steam savings of up to 30%. Current comparisons of steam plant operators show that savings of this magnitude are attainable only by installing a sliding gate valve in place of a traditional control valve.

The most important prerequisites for short reaction times in a control element are short strokes, small actuators and low actuation forces resulting from these. All of these characteristics come together in the sliding gate valve. As it operates, two slotted plates slide against each other transversely to the direction of flow. Thus, the sliding gate valve seals itself without the need for a metallic seat. The typical stroke between opened and closed is a mere 6-9 mm. One of the most noteworthy advantages stemming from this operating principle is the low actuation force required for the positioning movements.

Control dynamics at the highest performance level

By analysing its frequency response, the dynamics of a control valve can be evaluated in terms of its control performance. This aspect was studied experimentally for different control valve systems. The general conclusion is that the use of sliding gate valves in a control circuit results in higher critical gains. On the one hand, therefore, the process controller can be set ‘more aggressively’, while, on the other, overshooting is reduced when approaching a changed set point value, which is also reached more quickly.

Depending on the plant and process, it is therefore possible to tap into potential additional savings simply by exchanging a globe style valve for a sliding gate valve. By doing so, the quantities of steam fed unnecessarily into the system by overshooting action are reduced. This is supported by the figures recorded by operators of different steam systems.

Chinese tobacco manufacturer, Hongta Tobacco, reduces steam consumption by 30%

In the three lines at the Chinese tobacco manufacturer, Hongta Tobacco, the tobacco is conditioned at different temperatures. The process variable defining the quality is the temperature setting at 60, 65 or 70°C. Depending on the temperature setting required, previously Hongta Tobacco had required up to 990 kg of steam per hour for this process. The plant operator replaced traditional globe style valves in this steam facility with sliding gate valves. Then the temperature control parameters were readjusted and the resulting steam consumption measured. Afterwards, the steam con­sumption fell in the 60 degree line by 200 kg/h, or 36%, 65 degree line by 200 kg/h, or 25% and 70 degree line by 150 kg/h, or 17% - the investment in sliding gate valves paid-off within a few months.

Palm oil producer Palmaju Edible Oil saves five tons of steam per day

Besides the advantages that sliding gate valves can bring to systems, they are also easy to automate. The potential savings that can be achieved from a sliding gate valve incorporating an intelligent positioner are impressively documented by the operator of a palm oil plant, Palmaju Edible Oil, in Johor, Malaysia. By using a small sliding gate valve with a nominal size of DN32 with an electro-pneumatic positioner instead of a self acting pressure regulator, Palmaju Edible Oil was able to reduce the steam consumption by five tons per day. Based on the energy generating costs in Malaysia the savings potential amounts to over €25 000 per year for the plant operator.

With integrated process controller

As an option, the 8049 positioner used here has an integrated process controller for local control tasks. This version of the positioner with an IPC process controller combines the function of a positioner with that of a process controller. Thus, it is possible to set up local control circuits as found commonly in steam circuits, with minimum cost and effort involved in installation.

The sensor for the process variable is connected directly to the controller on the valve and the adjustments needed are carried out on location using a keyboard with a display or with the ‘DeviceConfig’ configuration software. Due to the excellent control quality, the electro-pneumatic positioner which controls the sliding gate valve pays-off within a few weeks in steam systems. By minimising the work required for installation and cabling, converting from manually-controlled valves to automated valves can be achieved extremely smooth.

Short stroke means less wear

In the sliding plate principle with its surface seal formed by the plates in the throttling element, the pressure of the medium against the moving valve plate assists the sealing function of the valve. This functional principle produces a self-lapping effect by the moving valve plate. This seal between the plates is therefore significantly less prone to fail and leakage rates of less than 0,0001% of the Kvs-value are achieved.

In addition, the slotted plates suffer hardly any wear as they slide against each other so that these valves combine long service lives with a high level of enduring leak tightness, even under the severe conditions they face in steam systems, for example. As an option, sliding gate plates are also available in carbon, so that an excellent seal is assured even at very high temperatures with a hard/soft combination of materials. The very short stroke is also a factor in service life: short motion paths and switching times protect the packing and the actuator.

For more information contact Rowan Blomquist, Macsteel Fluid Control, +27 (0)31 581 7803, [email protected], www.macsteel.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Ensuring occupational health and safety in mining
Analytical Instrumentation & Environmental Monitoring
Probe Integrated Mining Technologies (Probe IMT) has partnered with M3SH Technology to offer state-of-the-art environmental monitoring solutions that address these dual requirements.

Read more...
Sustainability of surface water
Endress+Hauser South Africa Analytical Instrumentation & Environmental Monitoring
The sustainability of surface water is critical for South Africa’s economic development, social well-being and environmental health. Endress+Hauser has a full range of liquid analysis sensors and transmitters to measure important parameters and has an excellent global track record in water and wastewater process plants and various surface and industrial water monitoring sites.

Read more...
Keeping an eye on invisible radiation
Omniflex Remote Monitoring Specialists Analytical Instrumentation & Environmental Monitoring
At its peak in 1994, the energy generation capacity of the UK’s nuclear power stations was 12,7 GW across 16 plants. In 2024, the capacity has fallen to around 5 GW, and the number of stations is down to nine. However, this is far from the end of the story as spent nuclear fuel remains radioactive for centuries, and requires rigorous safety processes to safeguard against leaks.

Read more...
Effective dust control in sugar processing
Analytical Instrumentation & Environmental Monitoring
BLT WORLD specialists work in conjunction with the global ScrapeTec team to offer dependable solutions for specific problems at the transfer points of conveyor systems in many industries where dust and material spillage are concerns, including the sugar sector.

Read more...
A benchmark for lubricant reliability in mining
Analytical Instrumentation & Environmental Monitoring
According to Craig FitzGerald from ISO-Reliability Partners, mines can save R500 000 or more on their yearly mill cleaning costs, while electricity consumption can be reduced by up to 12%, and lubricant consumption lowered up by up to 60% when using Bel-Ray Clear Gear lubricant.

Read more...
Safeguarding precision in industrial radiometric measurements
Mecosa Analytical Instrumentation & Environmental Monitoring
In the complex landscape of industrial plant operations, precision is paramount, especially when it comes to weld inspections to test for structural integrity of pipes. Berthold has the ideal answer to this challenge – X-Ray Interference Protection.

Read more...
New indoor air quality monitor
RS South Africa Analytical Instrumentation & Environmental Monitoring
RS South Africa has available a new indoor air quality (IAQ) monitor that provides continuous, easy-to-read, and accurate real-time monitoring of air quality in indoor environments.

Read more...
A quick guide to disinfection
Endress+Hauser South Africa Analytical Instrumentation & Environmental Monitoring
The distribution system in a drinking water network provides a reliable supply of high-quality water to consumers. Endress+Hauser’s range of robust, low-maintenance sensors are ideal for monitoring disinfectant levels in the water.

Read more...
Multi-parameter measuring system for water quality monitoring
KROHNE Analytical Instrumentation & Environmental Monitoring
Monitoring different parameters in water treatment processes can lead to a situation where different measuring points are scattered across the plant.

Read more...
Optimising energy consumption in the chemical industry
Anton Paar Analytical Instrumentation & Environmental Monitoring
To optimise energy consumption and save valuable resources on chemical process plants, operators have to continuously measure parameters such as concentration, raw density, sound velocity and refractive index. With Anton Paar’s wide product range, the process application team has many options for cutting-edge laboratory measurement technologies, and can develop tailor-made mathematical models for every application.

Read more...