Analytical Instrumentation & Environmental Monitoring


Tuneable diode laser spectroscopy

July 2010 Analytical Instrumentation & Environmental Monitoring

According to a 2005 government report, the industrial and mining sectors account for 47% of total end user energy demand in South Africa. Energy remains the second leading cost pressure (behind raw materials) currently affecting most manufacturers. Some of the biggest culprits are incinerators, crackers, process heaters, and other energy intensive combustion-based equipment.

The harsh operating conditions associated with combustion analysis applications can eat up a sensor in no time, resulting in inaccurate and unreliable measurements. This can make it nearly impossible to control these processes adequately. However, new analysis techniques, such as tuneable diode laser spectroscopy (TDLS), can improve efficiency, maximise throughput, reduce emissions and improve safety in combustion analysis applications.

Reduce energy consumption while improving throughput

Most energy intensive operations, such as those found in a refinery or chemical plant, experience considerable variability in energy consumption due to changing operating conditions, equipment degradation, fluctuating market conditions, and inefficient control strategies. As a result, plants typically consume more energy than necessary, yet are unable to improve efficiency due to the inability to collect and analyse real-time performance data. Frequently, the goals of optimising efficiency and maximising throughput are at odds with the need to reduce emissions and ensure plant and personnel safety. Effective energy management is essential for a ‘triple bottom line’ business strategy that addresses social, economic, and environmental concerns. TDLS can contribute to such a strategy by helping increase throughput and reduce energy costs, while supporting safe and environmentally responsible operations.

Advanced process control (APC) systems require sensitive and accurate process measurements in real-time, or near-real-time. APC reduces process variability and inefficiency, improves product quality, and provides for more stable operations. With few exceptions, current process analytical techniques lack the speed, accuracy and sensitivity to provide reliable measurements for APC. On-line optimisation goes beyond advanced control to optimise a process based on an economic objective function.

This is becoming more important in applications where profitability depends upon improving quality, while maximising material utilisation and minimising energy usage.

Historically, obtaining reliable quality measurements in time to impact control has been an issue in combustion control applications. The current best practice utilises a Zirconia sensor for point measurement of oxygen. In applications requiring multiple measurements, point measurement cannot provide a representative sample, making it both error prone and potentially dangerous. Process oxygen measurement requires samples to be extracted and then transported to an analyser for conditioning and analysis. This slows response time, adds cost, and degrades measurement accuracy.

TDLS in combustion analysis

Inefficient combustion can be attributed to the air/fuel ratio. Excess air results in loss of efficiency and increased NOx emissions, while too little air is dangerous. Carbon monoxide measurement provides an indication of fuel-rich conditions, while oxygen measurement indicates air-rich conditions. The optimum control point is the lowest possible excess air value that does not cause the system to enter into an unsafe condition or violate emissions limits.

Tunable diode laser technology is an innovative measurement technique that utilises semiconductor lasers to detect a variety of gases at trace levels in the part-per-million (ppm) or part-per-billion (ppb) range. Tuneable lasers, which enable miniaturisation of transmission and receiving units, provide highly sensitive, quantitative measurements with fast response times without the need for recalibration. The lasers can be tuned to detect specific constituents independent of process gas concentrations.

TDLS enables high performance measurements in real-time, even in challenging process environments. Exact performance specifications may vary somewhat according to supplier; however, the benefits are universal.

To date, the most widely reported application of TDLS has been for combustion control. Energy can be the largest component of a manufacturer’s cost structure with costs expected to trend upward over the long term. A willingness to apply state-of-the-art technologies can have a significant impact on the success of energy management programs. Technologies, such as TDLS, that can improve performance and provide quick ROI can have a significant impact on the bottom line.

For more information contact Larry O’Brien, ARC Advisory Group, (+1) 781 471 1126, [email protected], www.arcweb.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

WearCheck Water wins accreditation for microbiological testing
Wearcheck Analytical Instrumentation & Environmental Monitoring
WearCheck Water’s Johannesburg laboratory was recently awarded ISO/IEC17025 accreditation for Total Coliforms and E.coli Testing after a rigorous audit process, adding to the company’s extensive list of certifications, and reinforcing the laboratory’s adherence to national and international work quality standards.

Read more...
Advancing process weighing and weighbridge automation
Analytical Instrumentation & Environmental Monitoring
Sasco Africa, a leader in industrial weighing solutions, is showcasing its latest innovations in process weighing and weighbridge automation.

Read more...
Analysis solutions for total organic carbon
Analytical Instrumentation & Environmental Monitoring
Prepare for the future of water quality monitoring with Hach’s industry-leading total organic carbon (TOC) analysis solutions.

Read more...
Oxygen measurement in beverages
Analytical Instrumentation & Environmental Monitoring
[Sponsored] Anton Paar offers a complete range of oxygen measurement instruments for total package oxygen (TPO) measurements, at-line quality control (QC), and in-process monitoring. These instruments help beverage manufacturers achieve accurate, reliable oxygen control at every stage of production.

Read more...
Temperature, humidity and barometric pressure transmitter
Senseca Analytical Instrumentation & Environmental Monitoring
Senseca’s environmental temperature, relative humidity and barometric pressure transmitter, ENVIROsense has all three measurement criteria available in one device.

Read more...
Analysers achieve OIML R140/MID accuracy class A certification
Analytical Instrumentation & Environmental Monitoring
Qmicro by Sensirion has received the OIML R140/MID accuracy class A certificate No. TC12537 for its DynamiQ-X GC analysers for the analysis of natural gas and natural gas blended with hydrogen.

Read more...
Sustainable water management
Wearcheck Analytical Instrumentation & Environmental Monitoring
Water sustainability is critical for the future wellbeing of people, land and marine ecosystems, and socio-economic development. WearCheck Water provides a range of water analysis techniques to determine water quality for various sectors, including mining, agriculture, domestic and the healthcare industry.”

Read more...
Biofilm monitoring system
Instek Control Analytical Instrumentation & Environmental Monitoring
Alvim, through Instek Controls, provides innovative, high-tech solutions for biofilm and biofouling monitoring in industrial plants.

Read more...
WearCheck Water earns AdBlue/DEF analysis accreditation
Wearcheck Analytical Instrumentation & Environmental Monitoring
WearCheck Water recently became the first laboratory in Africa to be officially ISO17025 accredited to test AdBlue diesel exhaust fluid by the South African National Accreditation System.

Read more...
Streamlining strain gauge load cell integration
Vepac Electronics Analytical Instrumentation & Environmental Monitoring
Vepac’s data acquisition hardware provides an efficient and effective all-in-one solution for customers looking to simplify, enhance and optimise their strain gauge load cell systems.

Read more...