IT in Manufacturing


How far can ML and AI go in food & beverage?

November 2023 IT in Manufacturing

Artificial intelligence (AI) has hit the headlines recently, with a great deal of media coverage dedicated to how ChatGPT and similar technologies are making their mark on our everyday lives. With all this attention, you could be forgiven for thinking that AI is a new technology. In fact, AI can date its origins back to the 1950s. What we are actually seeing today are the results of decades of research and technological developments; they just all seem to be coming to mainstream fruition now, making a real difference to how we live and work.

When it comes to the food and beverage sector, things are no different, and more businesses are reaping the benefits of AI technologies. With the value of the market for AI in the food and beverage sector expected to reach a staggering $30 billion by 2028, the number of food and beverage businesses investing in AI is clearly predicted to increase. But while many in the industry have heard of AI, there is still widespread uncertainty about what it actually is, how it works and how it can benefit the food and beverage sector.

What is AI? What is machine learning (ML)?

AI is the ability of a computer or machine to mimic or imitate human intelligent behaviour and perform human-like tasks. It performs tasks that require human intelligence such as thinking, reasoning, learning from experience, and making its own decisions. ML is a subset of AI. It involves computer systems that can learn and adapt without being explicitly programmed or helped. ML uses algorithms and statistical models to analyse data intelligently, drawing inferences from data patterns to inform further action.

Where does AI fit into the food and beverage sector?

AI has the potential to optimise all areas of food manufacturing. It can facilitate smart, industry-specific applications to improve every aspect of the supply chain from farm to fork, helping to build agile supply chains and drive revenue growth. With its ability to factor in an inordinate number of data values, parameters, what-if scenarios and other contributing factors, ML can produce accurate and timely recommendations for almost every aspect of the food supply chain. Ultimately, this provides a competitive advantage that would be impossible to replicate without the application of AI technologies.

Where is ML being used already?

The uses of ML for the food and beverage sector are seemingly limitless. Take precision farming for example, an area where it is delivering new depths of insight. An example is the analysis of past harvests in terms of both quantity and quality, in combination with weather forecasts to inform which fields need watering and when to use fertiliser.

In the aquaculture sector leading animal nutrition company, Nutreco has achieved additional production cycles and healthier shrimps, while at the same time using 30% less feed. The business uses audio sensors in aquaculture to ‘listen’ to the shrimps, understanding when they are hungry. ML then determines when and how much the shrimps must be fed, which lowers the feed conversion ratio and shortens the shrimp production cycle, doubling production without huge intensification.

Another example of ML in action is at a global bakery ingredients business, Zeelandia. The business has addressed the challenges of higher costs and lack of available bakery ingredients by deploying an ML model that recommends products and prices to be offered to their bakery customers based on what similar customers are buying. Through the implementation of applied AI, the group has achieved an 83% faster time to prepare product recommendations for customers, cutting the time down from 30 minutes to five minutes. As a result of product recommendations taking less time, Zeelandia employees are able to provide a better customer experience. In addition to increased revenue per transaction and share of wallet per customer, the company is improving the accuracy and speed of product recommendations and pricing strategies.

We are seeing more food and beverage organisations turning towards AI to help reduce waste and identify inefficiencies within the supply chain. Leading global provider of goat and organic cow cheese, Amalthea, is using ML to make the cheese quality more predictable and to maximise yield, building customer loyalty and boosting sustainability. Previously Amalthea could only manually analyse milk yield on a weekly basis, which made it difficult to adjust the process parameters to optimise the yield. By leaning on ML, Amalthea can now view the yields immediately, in addition to receiving direct insight into what is causing a yield change. This has helped Amalthea to reduce its overall waste from manufacturing, as the company can quickly identify pain points and improve processes simultaneously. These changes have had a direct impact on the company’s profitability and bottom line. For every 1% increase in yield, Amalthea expects to save approximately €500 000.

Planning for all eventualities

Nowadays, food businesses could be forgiven for thinking that the only thing that they can be certain of is uncertainty itself. With more unpredictable variations in weather conditions, what about the role of ML where there are potentially no data patterns to be found? What ML can do is help understand the risks of changing weather conditions better, and how they can impact harvests globally. It is this increased understanding that can inform the strategies needed to mitigate these risks. But ensuring these strategies are effective requires consensus. As the UN’s Food and Agriculture Organisation (FAO) points out, every party involved in the food supply chain needs to become more resilient, minimising the use of water, energy and other resources. These are all changes that can be underpinned by ML.

As technology develops and as more businesses discover the benefits that can be realised with the application of AI, so AI capabilities will develop further, and be refined to solve specific industry or business problems. As we are seeing already, the considered application of AI technologies is helping businesses right across the food and beverage industry supply chain, and this is set to increase over the next few years. AI is already proving to be a driver of real efficiencies, and is helping businesses to plan for all eventualities, delivering the actionable insight needed to stay a step ahead at all times.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Looking into the future of machine vision
Omron Electronics IT in Manufacturing
Artificial intelligence (AI) is driving a significant transformation in all areas of industrial automation, and machine vision is no exception. Omron’s AI-powered machine vision systems seamlessly integrate state-of-the-art algorithms, enabling machines to analyse and interpret visual data meticulously.

Read more...
Driving digital transformation in the truck industry
Siemens South Africa IT in Manufacturing
Tatra Trucks, a leading truck manufacturer in Czechia, has adopted the Siemens Xcelerator portfolio of industry software including Teamcenter software for product lifecycle management and the Mendix low code platform to help increase production volume and strengthen its ability to manufacture vehicles that meet specific customer requirements.

Read more...
Opinion piece: Digital twins in manufacturing – design, optimise and expand
Schneider Electric South Africa IT in Manufacturing
Digital twin technology can help create better products, fast. It can also transform the work of product development. This strong statement from McKinsey reinforces how far digital twins have come in manufacturing.

Read more...
Asset tracking is key to driving operational excellence and sustainable growth
Schneider Electric South Africa IT in Manufacturing
Asset tracking plays a critical role in the success of industrial businesses. By effectively managing and monitoring assets, companies can optimise their operations, ensuring that resources are used efficiently. This leads to improved productivity and reduced costs.

Read more...
Siemens democratises AI-driven PCB design for small and medium electronics teams
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software is making its AI-enhanced electronic systems design technology more accessible to small and mid-sized businesses with PADS Pro Essentials software and Xpedition Standard software.

Read more...
Predicting and preventing cyber-attacks with AI and generative AI
IT in Manufacturing
The speed at which cyber threats are evolving is unprecedented. As a result, companies need to implement state-of-the-art technology to protect their data and systems.

Read more...
Real-world lessons in digital transformation
IT in Manufacturing
Synthesis has helped businesses across multiple industries with their digital transformation by solving their unique integration challenges.

Read more...
Enhancing cyber security for industrial drives
Siemens South Africa IT in Manufacturing
The growing connection between production networks and office networks as part of IT/OT integration and the utilisation of IoT have many benefits for industrial companies. At the same time, they also increase the risk of cyber threats. Siemens ensures that your know-how and plants are protected at all times.

Read more...
Immersion cooling systems for data centres
IT in Manufacturing
The demand for data centres in Africa is growing. The related need for increasing rack densities brings with it escalating cooling requirements.

Read more...
Transforming pulp and paper with automation and digitalisation
ABB South Africa IT in Manufacturing
The pulp and paper industry in South Africa is undergoing a significant transformation from traditional manual processes to embracing automation technologies. Automation in pulp and paper mills aims to improve various production stages, from raw material preparation to final product creation.

Read more...