IT in Manufacturing


World first simulation of error-correctable quantum computers

August 2025 IT in Manufacturing

Quantum computers still face a major hurdle on their pathway to practical use cases–their limited ability to correct the arising computational errors. To develop truly reliable quantum computers, researchers must be able to simulate quantum computations using conventional computers to verify their correctness – a vital yet extraordinarily difficult task. In a world first, researchers from Chalmers University of Technology in Sweden have now unveiled a method for simulating specific types of error-corrected quantum computations – a significant leap forward in the quest for robust quantum technologies.

Quantum computers have the potential to solve complex problems that no supercomputer today can handle. In the foreseeable future, quantum technology’s computing power is expected to revolutionise fundamental ways of solving problems in medicine, energy, encryption, AI and logistics. Despite these promises, the technology faces a major challenge, correcting the errors arising in a quantum computation. While conventional computers also experience errors, these can be quickly and reliably corrected using well-established techniques. In contrast, quantum computers are subject to far more errors, which are harder to detect and correct.

To verify the accuracy of a quantum computation, researchers simulate the calculations using conventional computers. One important type of quantum computation that researchers are interested in simulating is one that can withstand disturbances and effectively correct errors. However, the immense complexity of quantum computations makes such simulations extremely demanding – so much so that in some cases even the world’s best conventional supercomputer would take the age of the universe to reproduce the result.

Researchers from Chalmers University of Technology are the first in the world to present a method for accurately simulating a certain type of quantum computation that is particularly suitable for error correction, but which thus far has been very difficult to simulate. “We have discovered a way to simulate a specific type of quantum computation where previous methods have not been effective. This means that we can now simulate quantum computations with an error correction code used for fault tolerance, which is crucial for being able to build better and more robust quantum computers in the future,” says Cameron Calcluth, PhD in Applied Quantum Physics at Chalmers.

Error-correcting quantum computations

The limited ability of quantum computers to correct errors stems from their fundamental building blocks – qubits – which have the potential for immense computational power but are also highly sensitive. The computational power of quantum computers relies on the quantum mechanical phenomenon of superposition, meaning qubits can simultaneously hold the values 1 and 0, as well as all intermediate states, in any combination. The computational capacity increases exponentially with each additional qubit, but the trade-off is their extreme susceptibility to disturbances.

“The slightest noise from the surroundings in the form of vibrations, electromagnetic radiation or a change in temperature can cause the qubits to miscalculate or even lose their quantum state and their coherence, thereby also losing their capacity to continue calculating,” says Calcluth.

To address this issue, error correction codes are used to distribute information across multiple subsystems allowing errors to be detected and corrected without destroying the quantum information. One way is to encode the quantum information of a qubit into the multiple – possibly infinite – energy levels of a vibrating quantum mechanical system. This is called a bosonic code. However, simulating quantum computations with bosonic codes is particularly challenging because of the multiple energy levels and researchers have been unable to reliably simulate them using conventional computers – until now.


Photograph: Chalmers University of Technology

New mathematical tool key in the researchers’ solution

The method developed by the researchers consists of an algorithm capable of simulating quantum computations that use a type of bosonic code known as the Gottesman-Kitaev-Preskill (GKP) code. This code is commonly used in leading implementations of quantum computers.

“The way it stores quantum information makes it easier for quantum computers to correct errors, which in turn makes them less sensitive to noise and disturbances. Due to their deeply quantum mechanical nature, GKP codes have been extremely difficult to simulate using conventional computers. But now we have finally found a unique way to do this much more effectively than with previous methods,” says Giulia Ferrini, associate professor of Applied Quantum Physics at Chalmers.

Thanks to the new method, researchers can now more reliably test and validate a quantum computer’s calculations. “This opens up entirely new ways of simulating quantum computations that we have previously been unable to test, but are crucial for building stable and scalable quantum computers,” concludes Ferrini.

For more information contact Henrik Dahlberg, Chalmers University of Technology, +46 31 772 1940, [email protected], www.chalmers.se




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Unlocking mining efficiency with advanced processing control
IT in Manufacturing
ABB’s Advanced Process Control system, powered by its Expert Optimizer platform, is emerging as a key enabler of smarter, more efficient mining operations.

Read more...
Open control technology reduces energy consumption and carbon footprint.
Beckhoff Automation IT in Manufacturing
The Swedish company Airwatergreen AB is breaking new ground in the dehumidification of air in industrial buildings and warehouses. PC-based control from Beckhoff regulates the innovative process.

Read more...
Harnessing AI and satellite imagery to estimate water levels in dams
IT in Manufacturing
Farmers and water managers often struggle to accurately estimate and monitor the available water in dams. To address the challenge, International Water Management Institute researchers have worked with Digital Earth Africa to create an innovation that uses satellite images and AI to get timely and accurate dam volume measurements.

Read more...
Why industry should enter the world of operator training simulators
Schneider Electric South Africa IT in Manufacturing
System-agnostic operator training simulator (OTS) software is a somewhat unsung hero of industry that trains plant operators in a virtual world that mirrors real-world operations. The benefits are multiple.

Read more...
Track busway for scalable data centre power delivery
IT in Manufacturing
The latest generation Legrand Data Centre Track Busway technology addresses the operational pressures facing today’s high-density, AI-intensive computing environments and is being well received by data centre facilities around the world.

Read more...
Poor heat management in data centre design
IT in Manufacturing
Designing a world-class data centre goes beyond simply keeping servers on during load shedding; it is about ensuring they run efficiently, reliably, and within the precise environmental conditions they were built and designed for.

Read more...
It’s time to fight AI with AI in the battle for cyber resilience
IT in Manufacturing
Cybercrime is evolving rapidly, and the nature of cyber threats has shifted dramatically. Attacks are now increasingly powered by AI, accelerating their speed, scale and sophistication. Cybersecurity needs to become part of business-critical strategy, powered by AI to match attackers’ speed with smarter, faster and more adaptive defences.

Read more...
Why AI sustainability must be a boardroom priority
IT in Manufacturing
As South African companies race to harness artificial intelligence for innovation and growth, few are asking the most critical question - the environmental cost.

Read more...
RS South Africa shines spotlight on MRO procurement
RS South Africa IT in Manufacturing
RS South Africa has highlighted the growing pressures faced by procurement professionals responsible for maintenance, repair and operations supplies across the country’s vital economic sectors.

Read more...
Sustainable energy management
Siemens South Africa IT in Manufacturing
Utilising its innovative ONE approach technology, Siemens provides complete transparency on resource consumption and offers data-driven optimisation recommendations for sustainable energy management.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved