Editor's Choice


Total 3D linearisation: Best performance under all process conditions for DP transmitters

February 2022 Editor's Choice Flow Measurement & Control

Be it pressure, flow, level, density or interface applications with gases, liquids or steam, differential pressure (DP) measurement is a technology suitable for many processes. DP sensors are capable of measuring an extreme range of process temperatures and pressures. Modern DP transmitters must be able to cope with ever-increasing requirements in terms of safety, reliability and long-term stability in industrial processes. Changes in process conditions can present a challenge for DP measurement as these changes can influence the actual measurement uncertainty.

To ensure the best performance under all process conditions, KROHNE performs total 3D linearisation of each DP transmitter to compensate for possible influencing factors in combination. This provides for a robust and accurate differential pressure measurement, even under changing process conditions.

Innovative measuring cell

There are three influencing factors on the measurement uncertainty of DP transmitters:

1. Linearity of the differential pressure (DP).

2. Ambient temperature effect (T).

3. Line/static pressure effects (SP).

These influences can be caused by changing process conditions and may result in inaccurate readings delivered to process control by the DP transmitter.

To overcome this, KROHNE has a new innovative approach on the DP measuring cell design. The DP cell itself has extremely small dimensions and a low mass. The reduction of unnecessary material assures fast reaction on ambient temperature changes. The small dimensions reduce the amount of fill fluid volume to assure the lowest possible ambient temperature effect. The small diaphragm footprint provides a small area force at high static pressure ranges of 400 bar/5800 psi or 700 bar/10 000 psi.

Active compensation with built-in sensors

The innovative design does not stop on the outside, the internals of the measuring cell were also re-engineered: Additional to the silicon-based piezoresistive differential pressure sensor, an absolute pressure sensor on the low pressure side and a temperature sensor are built into the measuring cell. These additional sensors are required for the total 3D linearisation that is performed on every OPTIBAR DP device produced.

These sensors can provide additional valuable information about the process, such as the static line pressure or the state of DP-cell temperature to maintain safe conditions for the operator. All sensor values can be submitted via HART, fieldbus communication or on a secondary current output to the control system.

The KROHNE total 3D linearisation starts by running a full raw data acquisition to measure the uncertainty against a known reference on a minimum of 400 discrete measurement points.

Every DP cell passes through its entire specified operational range – for example:

• Differential pressure range P: -500 … +500 mbar*.

• Ambient temperature range: -40…+85 °C / -40…185 °F.

• Static line pressure: 0…160 bar / 0…2320 psi.

The result is a three-dimensional (‘3D’) matrix of individual linearisation coefficients for each measuring cell. They are passed through a correction polynomial and are uploaded to the measuring cell front-end electronics. After this raw data acquisition run, a final calibration run is performed to confirm that each individual DP cell complies with KROHNE’s stringent 3-sigma performance specifications.

After passing the total 3D linearisation, the measuring cells are connected to an OPTIBAR DP transmitter. All relevant parts are marked with a bar code so that all production and calibration data can be traced for each transmitter.


OPTIBAR DP 7060 high performance differential pressure transmitter with orifice plate and with averaging pitot tube.

Added benefits: no periodic re-adjustments

The typical installation of a DP transmitter in the field requires several important steps for a proper commissioning. Once the transmitter is physically installed, the zero-point adjustment is performed and the span is calibrated using a portable field pressure calibrator. It should be noted that with processes with high static pressures, the transmitter must be isolated from the process and calibration must be performed by trained and experienced personnel. Conventional transmitters are usually re-verified in the field at regular intervals.

With KROHNE’s total 3D linearised differential pressure transmitters, time consuming commissioning calibrations can be reduced. The significant extension of re-verification intervals further reduces the total cost of ownership. Frequently-changing line pressures do not cause any drifts due to the internal absolute pressure sensor and the total 3D linearisation.

Available transmitters

KROHNE offers two DP transmitters with total 3D linearisation. The OPTIBAR DP 3050 is a differential pressure transmitter with integrated absolute pressure measurement. It is the ideal choice for general flow, level and differential pressure applications. KROHNE claims the device is currently the most compact pressure transmitter on the market. This makes it particularly suitable for space-saving installation in applications with limited space, e.g. in mechanical and technical plant engineering. This compact DP transmitter features the proven-in-use DP transmitter technology of the OPTIBAR series, but it comes without the high-end options of the more advanced OPTIBAR DP 7060. KROHNE points out that the OPTIBAR DP 3050 is one of the most cost-effective DP pressure transmitters on the market. For DP flow measurements it can be combined with KROHNE primary flow elements. Equipped with diaphragm seals it is a good choice for hydrostatic level and general-purpose DP measurements.

The OPTIBAR DP 7060 is a high performance differential pressure transmitter with integrated absolute pressure measurement. It offers a high degree of modularity for various flow, hydrostatic level or process pressure applications. For DP flow measurements it can be combined with the KROHNE primary elements (e.g. orifice plates or pitot tubes). Equipped with diaphragm seals, it is the right choice for hydrostatic level, interface, density or demanding DP process applications. Featuring a response time of just 125 ms, the DP transmitter offers high accuracy and measurement stability under all process conditions.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Time-sensitive networking
RJ Connect Editor's Choice Fieldbus & Industrial Networking
In this article, we will explore what is driving the rise of time-sensitive networking, how it is reshaping industrial efficiency, the challenges when deploying this technology, and ways to tackle these challenges.

Read more...
Loop Signature 30: Nonlinearity in control loops (Part 1)
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
If nonlinearity occurs it means that if one is to carry on controlling with the same response to changes in load or setpoint, then the tuning of the controller will also need to be adjusted to meet the new conditions.

Read more...
Precision in paper processing
VEGA Controls SA Editor's Choice Level Measurement & Control
Paper manufacturing is a demanding process that relies on consistency, precision and control at every stage. The VEGABAR 82 pressure transmitter is well-suited to these harsh environments.

Read more...
Ensuring clean and safe water
Endress+Hauser South Africa Editor's Choice Analytical Instrumentation & Environmental Monitoring
Endress+Hauser’s comprehensive range of disinfection sensors is designed to monitor and control disinfectant levels in water treatment processes.

Read more...
A South African legacy in telemetry
Interlynx-SA Editor's Choice Industrial Wireless
Telemetry is becoming a vital component of industrial strategy, allowing companies to harness real-time data to optimise processes and reduce waste. One company leading this technological shift is Interlynx.

Read more...
Case History 199: Another example of the effectiveness of cascade control
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
In my last article I wrote about how cascade control systems can effectively overcome valve problems. This article gives another example of how a temperature control was able to perform well, in spite of really severe valve problems.

Read more...
Upgrading legacy automation
Omron Electronics Editor's Choice Fieldbus & Industrial Networking
Legacy automation is characterised by technology in the later stages of its useful life. As new automation technologies continue to emerge and interconnect at an exponential rate, failing to integrate these technologies can widen the gap between the competitive and the obsolete.

Read more...
Planetary gear units for high torque requirements
SEW-EURODRIVE Editor's Choice Motion Control & Drives
Packing a compact design, along with high torque and low-speed outputs, the new SEW PPK and SEW P2.e planetary gear units from SEW-EURODRIVE offer new capabilities in continuous heavy-duty applications where space is at a premium.

Read more...
These robots crawl into every nook and cranny
DNH Tradeserve t/a DNH Technologies Editor's Choice Motion Control & Drives
Inuktun's small crawler robot magnetically sticks to metal walls and is able to move in all directions. It carries cameras, sensors and tools for inspection or maintenance work in tight pipes and on the outer hulls of tanks or ships. All crawler modules and cameras are equipped with brushed DC motors from Swiss drive specialist, maxon using various motor-gearhead combinations.

Read more...
Swiss watchmaking meets hypercar power
Horne Technologies Editor's Choice
The display of Bugatti’s upcoming luxury model, Tourbillon will be something truly special. Instead of a digital version, the driver will see a genuine Swiss timepiece behind the steering wheel.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved