Editor's Choice


Control loop: Case History 180 - Fuel gas pressure control problem

November 2021 Editor's Choice

I was recently asked to sort out a serious control problem on a fuel gas pressure control in a refinery. The loop, the cascade secondary loop to the furnace temperature control, is extremely important because furnace temperature is critical in refinery operation.

A cascade secondary control loop with temperature as the primary control usually has to work quite hard with fairly big movements due to temperature processes often being quite slow and requiring ‘hefty’ tuning.

The problem with the pressure control was that it seemed to work intermittently and sometimes was almost unstable. It also seldom got to setpoint, resulting in large and unacceptable variance on the control.

Testing was extremely difficult to perform on this loop as the operators were insistent that only very small changes could be made, as downstream production could be badly affected if things were moved too much. For this reason, we could not make all the steps I would like to have done.

Closed loop test

Figure 1 shows the closed loop test ‘as found’, which is a test performed with the loop on local setpoint and using the original tuning parameters. It shows two things quite clearly, firstly that the loop was almost unstable and secondly, that the response was slower as the setpoint was moved up, which could indicate non-linear installed valve characteristics.

Further tests also showed that the pressure dynamics were behaving in a strange manner that was not reflective of the actual valve movement, with the pressure PV moving around quite considerably when the controller output was constant. It is not clear as to the cause of this, possibly it was a problem in the measurement, but certainly it would be very difficult to try and get reasonable and consistent control with that behaviour.

Fortunately, it was discovered that there was a flow transmitter in the gas line and it was found that this gave a much better indication of the valve’s performance than the pressure. This is shown in the open loop test of Figure 2, where the difference in the behaviour of the two PVs can be seen. It was therefore recommended that the cascade secondary loop should be changed from pressure to flow. Unfortunately, in this plant as in many others, one cannot just change things like a control strategy immediately. Changes must be approved by a committee comprising process control and instrument engineers. Obviously, the loop would have to be retuned if the change is made.

Open loop test

Figure 3 shows an open loop test with the normal type of steps being made on the PD (controller output) and response of the flow PV being shown. The pressure PV was also recorded as it was needed to try and get a better tune to use in the meantime, but that trace has not been shown in the figure for the sake of clarity.

Figure 3 clearly shows that valve problems also existed. These are:

1. The valve movement is very non-repeatable. It sometimes overshot on being reversed and at other times it stuck quite badly on a reversal.

2. Although the steps made on the PD were all of the same size, the valve seemed to move in smaller steps on opening and much larger steps on closing.

3. At times the valve stuck for a while and then eventually slipped.

4. It looked like the installed valve linearity wasn’t too bad, but it is hard to be sure from this test. It certainly looked like non-linearity in the first ‘as found’ closed loop test shown in Figure 1.

5. Comparing the magnitudes of the steps in PV versus those in the PD, the valve is probably 3-4 times oversized. As mentioned in past articles, oversized valves amplify all problems by the oversize factor.

It is almost impossible to get good control with such a valve. It was therefore recommended that the valve be serviced and preferably replaced with a correctly sized one.

Just in passing, it is interesting to note that I optimised the same loop some 11 years previously and on comparing the then and present tests, it was seen that the process dynamics had changed completely. A subject of frequent discussion is how often one needs to reoptimise a control loop. In general, it is very difficult to answer this question as it depends on many different factors.

Online loop monitoring

My own experience is that dynamics do change on most loops over time and varying process conditions and this to me is an argument for the use of a continuous online loop performance monitoring package. These are often used to highlight badly performing loops. I have found that when used alone these packages can detect some bad loop problems, but often cannot show up other faults and are prone to misinterpreting certain types of loop performance. The best way therefore is to individually analyse and optimise each loop. The online packages really only come into their own after the individual loops have been properly optimised, as they can then immediately give warning of any deterioration in loop performance.


About Michael Brown


Michael Brown.

Michael Brown is a specialist in control loop optimisation with many years of experience in process control instrumentation. His main activities are consulting, and teaching practical control loop analysis and optimisation. He gives training courses which can be held in clients’ plants, where students can have the added benefit of practising on live loops. His work takes him to plants all over South Africa and also to other countries. He can be contacted at Michael Brown Control Engineering cc, +27 82 440 7790, [email protected], www.controlloop.co.za


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Machine health monitoring with ifm
ifm - South Africa Editor's Choice IT in Manufacturing
With ifm’s machine health monitoring, early signs of wear can be detected and unexpected failures prevented. Combined with equipment preventive maintenance software, interventions can be scheduled proactively to avoid costly downtime.

Read more...
Powering Africa’s sustainable mining
VEGA Controls SA Editor's Choice Level Measurement & Control
At the 2026 Mining Indaba in Cape Town, one theme rises above all others, progress through precision. For VEGA, a global leader in process instrumentation, this mission aligns perfectly with its core purpose, which is turning measurement into meaningful progress.

Read more...
PCS Global delivers turnkey MCC installation in Botswana
PCS Global Editor's Choice PLCs, DCSs & Controllers
PCS Global is delivering a turnkey containerised MCC installation for a major copper mining operation in Northwest Botswana.

Read more...
SEW-EURODRIVE transforms drivetrain uptime
SEW-EURODRIVE Editor's Choice Motion Control & Drives
The DriveRadar IoT Suite from SEW-Eurodrive is an ideal solution for industrial condition monitoring. This powerful ecosystem of intelligent sensors, edge devices and cloud-based analytics ensures that customers have full visibility and control of their operations.

Read more...
Loop Signature 31: Non-linearity in control loops (Part 2)
Michael Brown Control Engineering Fieldbus & Industrial Networking
This article is a continuation of Loop Signature 30 published in the last issue in this series, exploring reasons for non-linearities which may be encountered in feedback control loops

Read more...
PC-based control for flat wire motors for electric vehicles
Beckhoff Automation Editor's Choice Motion Control & Drives
Special machine manufacturer, ruhlamat Huarui Automation Technologies has unveiled the second generation of its mass production line for flexible stators with bar winding (pins). This enables an extremely short production cycle and line changeover times, supported by PC- and EtherCAT-based control technology from Beckhoff.

Read more...
Heavy impact, smart control
Axiom Hydraulics Editor's Choice Pneumatics & Hydraulics
Every now and then a project lands on your desk that’s equal parts heavy machinery and fine control - a tantalising mix for any engineer. A client approached Axiom Hydraulics with a project exactly like this.

Read more...
Pneumatics makes a technological leap with the proportional valve terminal
Festo South Africa Editor's Choice Motion Control & Drives
Festo continually makes bold technological leaps to keep pace with global advancements. Controlled Pneumatics is redefining the boundaries of compressed air technology to meet the demands of today’s most advanced applications.

Read more...
Driving fluid power forward
Editor's Choice News
The National Fluid Power Association is developing its latest Industrial Technology Roadmap for 2025, showing how hydraulics and pneumatics are changing to meet new industrial demands.

Read more...
World’s hottest engine
Editor's Choice Motion Control & Drives
Scientists have built the world’s smallest engine. It’s also the world’s hottest. It could provide an unparalleled understanding of the laws of thermodynamics on a small scale, and provide the foundation for a new, efficient way to compute how proteins fold.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved