Editor's Choice


Control loop: Case History 179 - Some unusual measurement and control problems

September 2021 Editor's Choice

As I have often mentioned, many people do not know how to set up control on PLC/scada systems properly and errors in control and measurement often result.

Admittedly I have found similar problems in DCS control systems, but much more rarely. I think this is because DCS systems are usually found in plants where there is a strong control ethos and people in the manufacturing teams have a better understanding of control and measurement. Also, DCS systems have many more safeguards built into them to prevent users making mistakes than do most PLC/scada systems.

Problems with a nitrogen flow control loop

The example given in this article illustrates some mistakes made by the system integrators and control engineers at a metals extraction plant that used a well-known make of PLC and scada for its controls. The C&I; staff in the plant had not picked the errors up and had been working for years with the problems. The loop in question was an important nitrogen flow control feeding an hydrogen sulphide reactor.

Whenever one optimises a control loop, it is essential that you first discuss the control in its entirety with the people who look after the control side of things, as well as with the people who really understand the process. In many plants they are the same people, but often I find that people on the control side do not really understand the process and vice versa, people on the process side often don’t understand controls.

Typically, we investigate and discuss the following:

1. Details of the process.

2. The configuration of the control loop.

3. The control strategy.

4. The purpose of the control.

5. How quickly the control must react. For example, sometimes they want it as fast as possible, or maybe it must be kept slow so as not to disturb things downstream. Sometimes it doesn’t really matter and it is fine if it operates mostly in the right region.

6. What external factors can affect the control and can this loop affect other controls or processes?

7. Details of the measuring system.

8. Type of valve.

9. Problems that are being encountered with this control.

In the case we are discussing here, the two main problems encountered by the operators and process engineers were firstly that the readings didn’t tie up with laboratory measurements and mass flow balances and secondly, the control was not satisfactory, being slow and hardly ever getting to SP (setpoint).

On investigating, it was discovered that the range set in the PLC was incorrect. The actual flow transmitter range was set to 0-1125 m3/h, but the figure that had been programmed into the controller’s PV (process variable input) was 0-1200 m3/h. On top of this, the transmitter signal coming into the PLC was first divided by 1,25, as the process people wanted to see a mass flow range of 0 -900 Nm3/h and not volume flow figures. This explained the discrepancy observed by the process people.

The next problem observed was that the flow signal was running at about 5% of the full-scale reading. This is potentially very bad. As a rule, very few flow measurements are accurate and reliable so low down in the range and may even be incorrect, which does depend on the type of measurement and the transmitter’s rangeability. Unfortunately, at the time of the testing, no one was available who could advise on the details and specification of the transmitter.

Optimising the loop

The first live test carried out on the loop is nearly always a closed loop test with ‘as found’ tuning, where setpoint changes are made on the loop with the original tuning (in this case P = 0,5 and I = 10 sec/repeat). There was also a lag filter with a time constant of 2,45 seconds inserted in the PLC before the PV input to the controller. The test is shown in Figure 1 and the following observations were made:

• The transmitter is working far too low down as discussed earlier.

• The tuning is incredibly slow and takes far too long to follow setpoint.

• Although the filter is relatively small there is no need for it, as filters introduce other problems. (Discussed in other articles).

The open loop test (in manual) is shown in Figure 2. The filter has been removed. It can be seen that:

• The process gain (the ratio of the steps in PV to PD, the controller output) is about 0,3, which would indicate the transmitter is probably over-spanned by a factor of three.

• There is very slight non-linearity in the installed characteristics, which is not serious.

• The valve has an overshoot when moving in the closing direction. This is not particularly serious but could cause a stick-slip cycle when the loop is in automatic with better tuning. Possibly it could be eliminated by tuning the positioner a little better.

• Apart from this the valve is working very well.

The controller was then tuned using the largest step in PV (for safety). The Protuner gave a medium tune of P = 0,4, and I = 1 sec/repeat.

The final closed loop test with the new tuning is shown in Figure 3. It can be seen how well the control now works and it is about 15 times faster than the original tuning. This is an example of what we often find when performing loop optimisation where lack of knowledge of the practicalities of control results in underperformance and in this case, imparting incorrect information.


About Michael Brown


Michael Brown.

Michael Brown is a specialist in control loop optimisation with many years of experience in process control instrumentation. His main activities are consulting and teaching practical control loop analysis and optimisation. He gives training courses which can be held in clients’ plants, where students can have the added benefit of practising on live loops. His work takes him to plants all over South Africa and also to other countries. He can be contacted at Michael Brown Control Engineering, +27 82 440 7790, [email protected], www.controlloop.co.za


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Enhancing cybersecurity for connected serial devices
RJ Connect Editor's Choice
Industrial network security is not a luxury option, it is a necessity. Moxa’s secure serial device servers and protocol gateways have helped our customers ramp up their connectivity security in a variety of industrial applications.

Read more...
STEMulator – a gift to the youth of the nation
Editor's Choice News
STEMulator is a groundbreaking virtual platform designed to ignite the spark of curiosity in young minds and stimulate their interest in STEM subjects.

Read more...
Innovate, accelerate, dominate
Festo South Africa Editor's Choice Pneumatics & Hydraulics
Festo’s latest innovations, revealed through the Ramp Up Campaign, offer a blueprint for performance excellence, using the anatomy of a race car as an analogy to simplify and powerfully communicate how their technologies address industry challenges.

Read more...
Loop signature 29: Averaging or surge level control
Editor's Choice Flow Measurement & Control
There are many processes where it is undesirable for the load to suddenly change quickly, for example in the paper industry. Examples of level control have involved reasonably fast tuning. An example of a level loop tuned this way and responding to a step change in setpoint is given.

Read more...
Advanced telemetry solutions
Editor's Choice Industrial Wireless
Namibia is one of the driest countries in sub-Saharan Africa, with an average annual rainfall below 250 mm. To address this challenge, the Namibia Water Corporation has employed one of southern Africa’s most powerful and well-proven telemetry solutions, designed and manufactured by SSE/Interlynx-SA.

Read more...
Navigating the future of intralogistics
LAPP Southern Africa Editor's Choice
In the rapidly evolving landscape of global markets, the demand for agility, efficiency and scalability in intralogistics has never been more critical. At LAPP Southern Africa, we stand at the forefront of this transformation, offering cutting-edge connection solutions tailored to the dynamic needs of intralogistics.

Read more...
Cutting-edge robotics and smart manufacturing solutions
Yaskawa Southern Africa Editor's Choice
Yaskawa Southern Africa made a compelling impact at this year’s Africa Automation and Technology Fair.

Read more...
A cure for measurement headaches in contract manufacturing
VEGA Controls SA Editor's Choice
A contract manufacturing organisation provides support to pharmaceutical and biotechnology companies in the manufacturing of medications, formulations and substances. VEGA’s measurement solutions offer accuracy and reliability for monitoring levels and pressures during the manufacturing process.

Read more...
PC-based control for a food capsule and pod packaging machine
Beckhoff Automation Editor's Choice
For TME, a machine builder specialising in the packaging of powdered foods, Beckhoff’s PC-based control technology offers unlimited opportunities when it comes to performance and innovative capacity in terms of flexibility, scalability and openness.

Read more...
Case History 198: Cascade control overcomes valve problems
Michael Brown Control Engineering Fieldbus & Industrial Networking
A large petrochemical refinery asked me to perform an audit on several critical base layer control loops. This article deals with a problem found on a valve controlling the flow of fuel to a heat exchanger.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved