Editor's Choice


Control loop: Case History 177 - Valves, valves, valves!

May 2021 Editor's Choice

So many of my articles relate to valve problems that I just hope I don’t bore you, the readers, with the litany. With that said, 75-85% of all industrial control loop problems are due to valve issues, and it never ceases to amaze me that plant personnel having control problems generally have no idea that these are most likely caused by valves. It is also hard to believe that most control and instrumentation technicians and engineers seldom seem to know how to analyse such problems by following simple test techniques. As I have often mentioned, the most common fallacy in plants is that all control problems are due to bad tuning.

The two examples given in this article, which are taken from a petrochemical refinery, illustrate the lack of understanding as personnel had failed to identify valve problems that were so severe that they prevented any reasonable control. The problems were in fact terribly easy to diagnose, but the loops had been running like that for years.

Example 1

The first example is that of a reflux pressure control that is the secondary cascade control of a very important temperature, critical to the successful operation of a distillation column. The control was running in manual as it immediately started cycling badly when put into automatic and repeated efforts to tune the controller had failed.

Figure 1.

Figure 2.

Figure 3.

Figure 1 shows the operation of the loop, with a reasonable tuning, in closed loop (automatic). There was an additional flow transmitter in series with the pressure control valve and this flow PV is also shown in the recording. The control strategy used the pressure as the temperature secondary cascade, which is fine, as the pressure mirrored the flow very well. (Personally, I prefer using a flow signal as a cascade secondary.) The figure shows the loop in a completely unstable cycle.

Figure 2 shows an open loop (manual) test performed on the loop, and shows the controller output, and the pressure and flow PVs. This is a remarkable test as it shows how badly the valve was behaving. The following points are of extreme interest:

1. On nearly every step of PD (valve output) in the positive (opening) direction, the valve responded with a really massive overshoot (about five times bigger than the step).

2. On steps in the PD in the opposite negative (closing) direction it gave very small undershoots which recovered quite slowly.

3. On one reversal the valve moved in a small step in the one direction, and three times more in the opposite direction.

4. Near the end of the test, at about 188 seconds, the PD was being ramped down slowly to see what the valve did. It can be seen from both PV signals that the valve was in fact very sticky, and moved down in steps.

5. On the very last step of PD it can be seen that the valve overshot and then came back and started drifting back in the open direction.

One can conclude from all these problems that the valve behaviour is non-repeatable and is not doing what the controller demands. You cannot perform control with a valve that behaves like this. It is therefore absolutely essential that the valve be repaired or replaced before one can go ahead and tune to achieve satisfactory control.

Example 2

The second example is of an important pressure control that had a persistent small cycle, but which on occasion would go violently unstable. Many people had tried tuning this loop but could not stop the instability.

Figure 3 is a closed loop test (in automatic) with the existing tuning parameters. The figure shows not only the pressure’s PV, SP and PD (controller output) traces on the recording, but we also managed to find that a flow meter had been installed further down the line and we were able to record the flow PV as well.

The recording is one of the most remarkable I have ever seen, as it shows that the valve was operating at an average opening of about 0,8% based on the controller output values. The valve is hugely oversized, probably by as much as 40 times!

Valve rangeability figures – the ratio of maximum flows that can be controlled through a valve – are published by the valve manufacturers. Even really very good control valves have quite a limited rangeability, typically 300:1. Simple valves like butterfly valves are typically 50:1. However, for simplicity, a well-known rule of thumb among practitioners of instrumentation and control is that, under normal control conditions, control valves should always operate above 20% of opening. There are various reasons for this, including:

• In many valve installations, the differential pressure across the valve seat becomes very high when the valve is almost closed. This can, and often does, lead to instability, particularly if the valve positioner has insufficient power to deal with this force.

• It is almost impossible for the valve manufacturers to machine the valve seat components accurately enough to allow good smooth characteristics when the valve is very near fully closed.

• When very close to seat, the smallest movements of the PD onto the valve actuator, especially from noise coming through from the PV, can result in effective on/off action – which is what is happening in this case. This can clearly be seen from the cycle shown on the flow PV, which is effectively amplifying what the valve is doing.

The most remarkable thing about this control is that in spite of the valve operating in an absolutely impossible region, at less than 1% of opening and with the huge oversizing, the control manages to keep the PV pretty well at SP for most of the time. It is a testament to the manufacturers of the valve and to the mathematicians who originally came up with feedback control theory, that a pretty effective control was being obtained for most of the time.

The other almost unbelievable thing is that it has been running like this for years in the plant and nobody was aware that the valve was dramatically oversized. It once again illustrates the abysmal lack of knowledge of the practicalities of control and that so few people have been taught the practical side. Truly amazing!


About Michael Brown


Michael Brown.

Michael Brown is a specialist in control loop optimisation with many years of experience in process control instrumentation. His main activities are consulting, and teaching practical control loop analysis and optimisation. He gives training courses which can be held in clients’ plants, where students can have the added benefit of practising on live loops. His work takes him to plants all over South Africa and also to other countries. He can be contacted at Michael Brown Control Engineering cc, +27 82 440 7790, [email protected], www.controlloop.co.za


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Loop signature 22: How cyclical disturbances affect a control loop
Michael Brown Control Engineering Editor's Choice
When tuning noisy loops, we recommend in our courses that one should eliminate the noise by editing it out, so the tuning will be done only on the true process response, free of any noise. The controller is controlling the process, and is not controlling the noise.

Read more...
High-performance motion control for teabag packaging machine
Beckhoff Automation Editor's Choice
Teepak relies on PC-based control and drive technology from Beckhoff to set new benchmarks for speed and precision in its teabag packaging machines.

Read more...
VEGA takes the pressure out of water pressure measurement
VEGA Controls SA Editor's Choice
Water treatment systems in metropolitan areas require careful monitoring and management processes across widespread networks. However, process plants choosing VEGA for their process automation know that the company offers more than just precise and reliable pressure sensors and instrumentation.

Read more...
Advantages of wireless storage tank and container tank level monitoring
Turck Banner Southern Africa Editor's Choice
Implementing a tank monitoring system that utilises ultrasonic or radar sensors in a wireless network has many advantages.

Read more...
Case History 191: The weakest link.
Michael Brown Control Engineering Valves, Actuators & Pump Control
Which is the weakest link in a control loop? The answer, without any doubt is that, in most cases, the final control element is the weakest link.

Read more...
Bringing Industry 4.0 to a castings foundry for heavy industries
Editor's Choice
Moving to Industry 4.0 takes time and determination, especially for an established company in a heavy industry. Castings foundry, POK in Mexico has moved toward Industry 4.0 in a series of steps over several years, changing from manual to automated systems for more available, immediate and reliable data.

Read more...
SMOM – the future is here now
Iritron Editor's Choice IT in Manufacturing
In his presentation at the recent MESA Africa conference, Neels van der Walt, business development manager at Iritron, revealed the all-encompassing concept of smart mining operations management (SMOM), and why it is inextricably linked to the future of worldwide mining operations.

Read more...
Navigating disruption in manufacturing
Editor's Choice IT in Manufacturing
When considering IT in manufacturing, the underlying assumption is twofold: first, a wave of valuable maturing technologies can be harnessed to create new business value, and second, the environment in which these technologies will be applied will be relatively predictable, with change following a manageable, evolutionary path. However, recent disruptions have shattered these assumptions.

Read more...
The fascination of movement
Editor's Choice Motion Control & Drives
A motor from Faulhaber provides gentle motion for the finest watches in the world.

Read more...
Complete system for transparent energy monitoring
Beckhoff Automation Editor's Choice Electrical Power & Protection
Transparent energy monitoring reduces both machine downtime and the necessity to oversize the corresponding components. Added to these advantages are simplified preventive maintenance, and increased production efficiency. The wide range of PC-based control technology from Beckhoff offers a solution that can be optimally adapted to individual applications.

Read more...