Editor's Choice


Virtual commissioning evolves into a model-driven digital twin

August 2020 Editor's Choice

Virtual commissioning (VC) technology allows manufacturing and control engineers to simulate manufacturing production systems and validate that the physical packaging machines, conveyance systems, automotive production systems, robotic work cells, and controls (PLCs, drives, motors, sensors) will all physically function as designed and built.

Virtual commissioning uses a virtual model that represents an accurate and realistic 3D simulation of mechanical, electrical, and controls systems to validate the physical functions of a production system prior to actual physical implementation. The inherent complexity of integrating the different engineering disciplines previously necessitated a rather labour-intensive commissioning process. VC technology and applications were developed to reduce or eliminate the physical process, shortening the time to product launch, and ultimately producing significant cost savings.

The initial virtual commissioning applications emerged as part of the overall digital manufacturing portfolios offered by product lifecycle management (PLM) suppliers. Here, 3D CAD models of machines, robotic work cells, and production systems could be created and used to simulate motion and production functions. The other part of VC was to create software that would emulate the control systems (PLCs, robots, etc.) to be able to virtually test the physical system. Today, we are seeing the convergence of traditional VC with the more recent emergence of the concept and implementation of the digital twin.

The evolution of virtual commissioning

The automation industry has long acknowledged the benefits of using virtual models to simulate the performance of physical systems to enable integration issues to be identified before entering the time-consuming and expensive process of physical commissioning. To implement VC, however, the virtual factory model must be an accurate representation of the system. While these types of simulation models were used with some success in the aerospace and automotive industries, this was not the case in the overall automation market.

Control engineers and automation researchers have organised four categories of general controls development:

• Physical commissioning, which involved testing the physical systems (factory production systems) against the hardware without the assistance of virtual modelling tools.

• Model-in-the-Loop (MiL) where the application creates a logical model of the PLCs, HMIs, and electrical and mechanical systems. The application connects the logical model to a simulation model of the production system.

• Software-in-the-Loop (SiL) is the software code that runs the logical model.

• Hardware-in-the-Loop (HiL) testing, which uses a virtual production system model to test the hardware controllers. This is sometimes referred to as controls emulation.

The actual virtual commissioning process is usually an iterative approach using MiL, SiL, and HiL concurrently. Once the MiL is complete, controls engineers use SiL testing to verify that the logic in the model is consistent once it has been compiled into machine code. If no errors are found at this stage, final HiL testing is conducted by compiling the software onto the physical PLC or HMI. Today, suppliers of robust VC development and simulation platforms typically provide a full range of simulation and VC applications that meet this approach.

Virtual commissioning becomes part of the digital twin

Today, we’re seeing the convergence of established virtual commissioning technology with the more recent emergence of the concept and implementation of the digital twin across industry and business. While VC represents the simulation and modelling of machines and production systems to validate the system and the controls that automate it, the digital twin is broader in scope and involves capturing sensor data from physical machines and systems in operation and using that data to create simulations in real time. Because of its real-time characteristics, a digital twin can simulate a system while it is operational. This allows manufacturers to monitor the system, create models for adjustments, and make changes to the system.

Model-driven digital twin advances virtual commissioning

For virtual commissioning to become a practical technology across manufacturing and automation, automation generalists need to be able to create and use the virtual models for even complex simulation applications. The development of advanced, model-driven design methods has taken form in what the automation industry now refers to as a digital twin. Additionally, the continuous advancement of simulation modelling applied to today’s production systems offers a much more robust and accurate virtual representation than the earlier and simpler modelling tools for VC. Moreover, the software development standards for model rendering and connectivity have been improved significantly. Taken together, these make VC more practical for the automation industry.

Model-driven digital twins

With systems design modelling tools, the creation of a model-driven digital twin can begin concurrently to the design process. Advanced simulation modelling tools allow engineers to import CAD models of machines, automation hardware, robotics, and production line equipment to build dynamic models of the automation process. Model-driven digital twins make VC more accessible and add the power of advanced simulation technology and capability to the overall automation process.

The primary goal of the commissioning process, whether physical or virtual, is to bring a completely integrated, assembled, and validated mechanical, electrical, and controls software production system into operation. The challenge for successful VC implementation goes beyond just virtually emulating controls logic for the automation hardware. It involves integrating all the engineering disciplines of mechanical, electrical, and software logic design together in a systems design approach that normalises the constraints that each system places on the other.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Time-sensitive networking
RJ Connect Editor's Choice Fieldbus & Industrial Networking
In this article, we will explore what is driving the rise of time-sensitive networking, how it is reshaping industrial efficiency, the challenges when deploying this technology, and ways to tackle these challenges.

Read more...
Loop Signature 30: Nonlinearity in control loops (Part 1)
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
If nonlinearity occurs it means that if one is to carry on controlling with the same response to changes in load or setpoint, then the tuning of the controller will also need to be adjusted to meet the new conditions.

Read more...
Precision in paper processing
VEGA Controls SA Editor's Choice Level Measurement & Control
Paper manufacturing is a demanding process that relies on consistency, precision and control at every stage. The VEGABAR 82 pressure transmitter is well-suited to these harsh environments.

Read more...
Ensuring clean and safe water
Endress+Hauser South Africa Editor's Choice Analytical Instrumentation & Environmental Monitoring
Endress+Hauser’s comprehensive range of disinfection sensors is designed to monitor and control disinfectant levels in water treatment processes.

Read more...
A South African legacy in telemetry
Interlynx-SA Editor's Choice Industrial Wireless
Telemetry is becoming a vital component of industrial strategy, allowing companies to harness real-time data to optimise processes and reduce waste. One company leading this technological shift is Interlynx.

Read more...
Case History 199: Another example of the effectiveness of cascade control
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
In my last article I wrote about how cascade control systems can effectively overcome valve problems. This article gives another example of how a temperature control was able to perform well, in spite of really severe valve problems.

Read more...
Upgrading legacy automation
Omron Electronics Editor's Choice Fieldbus & Industrial Networking
Legacy automation is characterised by technology in the later stages of its useful life. As new automation technologies continue to emerge and interconnect at an exponential rate, failing to integrate these technologies can widen the gap between the competitive and the obsolete.

Read more...
Planetary gear units for high torque requirements
SEW-EURODRIVE Editor's Choice Motion Control & Drives
Packing a compact design, along with high torque and low-speed outputs, the new SEW PPK and SEW P2.e planetary gear units from SEW-EURODRIVE offer new capabilities in continuous heavy-duty applications where space is at a premium.

Read more...
These robots crawl into every nook and cranny
DNH Tradeserve t/a DNH Technologies Editor's Choice Motion Control & Drives
Inuktun's small crawler robot magnetically sticks to metal walls and is able to move in all directions. It carries cameras, sensors and tools for inspection or maintenance work in tight pipes and on the outer hulls of tanks or ships. All crawler modules and cameras are equipped with brushed DC motors from Swiss drive specialist, maxon using various motor-gearhead combinations.

Read more...
Swiss watchmaking meets hypercar power
Horne Technologies Editor's Choice
The display of Bugatti’s upcoming luxury model, Tourbillon will be something truly special. Instead of a digital version, the driver will see a genuine Swiss timepiece behind the steering wheel.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved