IT in Manufacturing


Industrial cybersecurity risk assessment and management

Technews Industry Guide: Industrial Internet of Things & Industry 4.0 IT in Manufacturing

Since the acceptance of the various IEC62443 modules as national standards: SANS62443-2-1/4, SATS62443-1-1 and SATR62443-3-1, there has been confusion about the requirements, methodologies and implementation. In this we are not unique as similar confusion reigned when ISA99 (the precursor of the IEC standard) was introduced internationally.

Two aspects are causing particular concern:

• Implementation of a cybersecurity management system (CSMS).

• Risk assessment.

In the case of the CSMS, there are extensive application notes and papers available. This article addresses the second and arguably more frustrating aspect.

The rationale behind risk assessment

SANS62443-2-1:2016 indicates that the risk analysis should consist of two aspects. The first is the rationale that covers situation/risks specific to the business. The second is the risk identification, classification and assessment with section 4.2.3 detailing all the requirements, and this is exactly where most of the confusion arises. Once one analyses the requirements it can be condensed into the following key outcomes:

• A risk assessment methodology must be selected – it is not prescribed.

• A high level risk assessment is required.

• A detailed risk assessment is required after the high level assessment and prioritisation.

• The methodologies do not need to be the same.

• Periodic reassessment is required.

Unfortunately, in South Africa very few operators of industrial plants actually implement the risk assessment process for cybersecurity, and those that do, almost never go into the detailed assessment requirements. As will be explained, there are good reasons why both must be done.

The high level assessment establishes the baseline and should deliver the following outcomes:

• Establishing the ‘real estate’ – this means what equipment is being used/affected and having as much detail as possible.

• Get general information around vulnerabilities and support status of xthe equipment.

• Determine management/process gaps through an evaluation process. Addressing these gaps (policies, procedures training etc.) is not part of the risk assessment process and is typically handled by a separate team.

• Do preliminary system segregation (this is on a theoretical not actual implementation level).

• Determine the target SL (security level) per zone.

• Do preliminary prioritisation of zone security implementations.

There are numerous tools available to do this assessment and selection is very dependent on the type of industry. Both this and the detailed assessment require a comprehensive team to complete successfully. The SL determination is critical as it determines the minimum level of security controls that must be put in place. Since there are always limitations on security budgets, the prioritisation allows one to focus on the zones with the greatest impact.

A security zone will typically contain two or more systems. The detailed assessment allows for lower level prioritisation, specifically:

• System priority.

• Specific vulnerability priority.

Three steps to a structured approach

Unfortunately, unlike the high level assessment there is no single software tool to address the process and one needs to use a variety of tools and systems together, check and verify the information. It is also an iterative process where certain steps might have to be repeated multiple times as new information is uncovered. Much of the information gathered in the high level assessment will be reused. Detailed discussion of the process falls outside the scope of this article; however, Proconics uses a NIST800-82R2-based process that is shown below. It consists of three phases with sub steps in each.

Stage 1 – asset ID and characterisation: define business objectives (business rationale in SANS62443); system classification; asset ID; network topology and data flow; and risk pre-screening (optional).

Stage 2 – vulnerability and threat modelling: security policy review; standards audit and GAP analysis; industrial cyber vulnerability assessment; threat assessment; attack vector assessment; risk scenario creation; and scenario validation (optional).

Stage 3 – risk calculation and management: calculate quantitative (monetary/safety) risk; prioritise mitigation; and mitigation validation (optional).

In conclusion, it can be seen that while the SANS62443 suite can be daunting, if one follows a structured and complete approach it is possible to manage risks. The process described here is not perfect and will not guarantee a fully secured plant, but it does allow for continuous and incremental improvement in security deployment.

For more information contact Cobus Pool, Proconics, +27 17 620 9600, [email protected], www.proconics.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Next-generation road-legal race car.
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software has announced that Briggs Automotive Company (BAC) will move to the Siemens Xcelerator portfolio of industry software and use it to develop the next generation of its single-seater road-legal race car, Mono.

Read more...
Cybersecurity at a crossroads
IT in Manufacturing
here’s a growing unease in boardrooms, data centres and cabinet offices across South Africa. It’s not just about economic headwinds or political uncertainty, it’s about something quieter, more technical and yet just as dangerous - the rising tide of cyber threats.

Read more...
Enabling a sustainable industrial organisation
IT in Manufacturing
This article explains the top sustainability trends and key actions that you can leverage to become a more sustainable organisation.

Read more...
Navigating discrete manufacturing in South Africa through digitalisation
IT in Manufacturing
South Africa’s discrete manufacturing sector faces mounting pressure from global competition, fragmented supply chains and outdated infrastructure. In this complex environment, digitalisation is a critical lever for survival, resilience and growth.

Read more...
Africa’s pragmatic approach to AI and how data centres are enabling it
Schneider Electric South Africa IT in Manufacturing
In Africa, the current AI momentum is driven by a fundamental need, building a resilient digital infrastructure that addresses the real-world challenges of the continent’s communities.

Read more...
World first simulation of error-correctable quantum computers
IT in Manufacturing
Quantum computers still face a major hurdle on their pathway to practical use cases, their limited ability to correct the arising computational errors. In a world first, researchers from Chalmers University of Technology in Sweden have unveiled a method for simulating specific types of error-corrected quantum computations.

Read more...
Platform to accelerate supply chain decarbonisation
Schneider Electric South Africa IT in Manufacturing
Schneider Electric has launched Zeigo Hub by Schneider Electric, a powerful new digital platform designed to help organisations decarbonise their supply chains at scale.

Read more...
Future-ready data centres
IT in Manufacturing
The white paper ‘Future-Ready Data Centres’ by Black & Veatch outlines how integrating sustainable design principles not only helps meet ESG goals but also ensures reliability, operational efficiency and business continuity in the face of climate change and growing digital demand.

Read more...
Sustainable energy management
Siemens South Africa IT in Manufacturing
Utilising its innovative ONE approach technology, Siemens provides complete transparency on resource consumption and offers data-driven optimisation recommendations for sustainable energy management.

Read more...
Enhancing operational safety and efficiency through advanced risk-based modelling
IT in Manufacturing
Now, more than ever, capital and operational cost can be reduced while enhancing operational safety and increasing production uptime by applying transformative methods such as Computational Fluid Dynamics modelling.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved