IT in Manufacturing


Three important technologies to slash manufacturing input costs

July 2018 IT in Manufacturing

Local manufacturing firms continue to face headwinds from heightened global competition from countries such as China and India, to sluggish demand and macroeconomic conditions, to critical skills shortages and labour issues. However, technology can help to relieve one of the most common pain points, the stubbornly high cost of production. By using the right digital tools, manufacturers can sustainably reduce their production costs, breathing new life into their margins and ensuring profitable operations.

Three areas in which this can be achieved are:

1. Raw material inventory and production planning

By using digital tags like RFID, plant operators can gain greater insight into materials, equipment, parts and other assets. Combine this with other datasets and it is possible to build up a rich picture of materials as they flow through a factory to eventually become finished products. By knowing exactly where everything is, it becomes easier to plan production, as data is automatically piped into a manufacturing execution system or production lifecycle management system. This means faster logistics and greater throughput of products, as well as increased levels of uptime and productivity – ultimately driving down input costs.

Rapid advances in 3D printing mean that certain parts and materials that are required urgently can be created on-site and at short notice, even further enhancing the management of materials.

One of the leaders in this space is General Electric. The company is reinventing itself with a variety of strategically connected technologies. These include lean manufacturing, additive manufacturing (also known as 3D printing) and advanced software analytics to enhance productivity. At Grove City, GE has used these technologies to reduce unplanned downtime by 10 to 20%, improve cycle time and reduce costs.

2. Predictive maintenance and predictive analytics

With sensors gathering key data on each machine – from humidity, heat, wear and tear, usage times, oil levels, and various other data points – it is possible to start predicting when a machine is likely to fail or require servicing. This principle, known as predictive maintenance, helps to curtail the cost of managing industrial equipment and reduces unexpected downtime as services, repairs and refurbishments can all be scheduled to avoid interrupting production lines.

With findings suggesting that downtime costs the average factory between 5 and 20 percent of its productive capacity, predictive maintenance can be one of the most crucial weapons in the fight against ballooning production costs.

It is possible to extend the principle of predictive maintenance to encompass predictive analytics across the entire factory operations. With predictive alerts coming in from all corners of the factory, it becomes possible to orchestrate the operations more dynamically, changing the daily plan according to fresh data that comes in from along the production line.

3. Proof of concept prototypes

In traditional manufacturing, creating a new prototype for a particular product was a lengthy and extremely expensive endeavour, particularly when the concept turned out to be the wrong one and never progressed into full-scale production. But with cutting edge digital simulations, 3D representations and holograms, it becomes possible to play around with various new prototype designs, testing them with users and getting a tangible feel. By creating sophisticated prototypes in these new ways, the dramatic upfront costs of producing a single unit on the production line are greatly reduced. In this way, rapid prototyping and proof of concept can cut out another layer of cost.

As traditional manufacturers evolve towards smarter and more digital production lines, it is not always easy to know where to invest first to get the greatest ‘bang for your buck’. But by focusing on these three areas, and then building from these foundations and gradually connecting other technologies, manufacturers can address the most pressing pain point, input costs, and set themselves well on the way to reducing the cost of production.

For more information contact Dereshin Pillay, T-Systems South Africa, +27 (0)84 671 5284, [email protected], www.t-systems.com/za/en





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Sustainable energy management
Siemens South Africa IT in Manufacturing
Utilising its innovative ONE approach technology, Siemens provides complete transparency on resource consumption and offers data-driven optimisation recommendations for sustainable energy management.

Read more...
Paving the way for a carbon-neutral future in South Africa
IT in Manufacturing
At ABB Electrification, we believe the infrastructure of the future must do more than support daily operations, it must anticipate them. We are committed to building intelligent systems that connect and optimise infrastructure across sectors.

Read more...
Africa’s hidden AI advantage
IT in Manufacturing
Through my work implementing AI systems across three continents, I’ve become convinced that Africa’s unique context demands urgent AI adoption. Successful implementation requires local expertise to understand resource constraints as design parameters to create the innovations that make technology truly work under real-world conditions.

Read more...
Siemens Xcelerator empowers space-tech pioneer, Skyroot Aerospace
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software has announced that Skyroot Aerospace, a leading private space launch service company in India, has adopted Polarion software from the Siemens Xcelerator portfolio to digitally transform its software development processes and enhance efficiency as it aims to accelerate access to space for its customers worldwide.

Read more...
Water is running out, is your ESG strategy ready?
IT in Manufacturing
Water is one of the most critical yet undervalued resources in modern business. Water stewardship asks businesses to understand their water footprint across the entire value chain and to engage with others who share the same water resources.

Read more...
Cybersecurity in 2025: Six trends to watch
IT in Manufacturing
Rockwell Automation’s?10th?State?of?Smart?Manufacturing report finds that cybersecurity risks are a major, ever-present obstacle, and are now the third-largest impediment to growth in the next 12?months.

Read more...
The state of the smart buildings market in 2025
IT in Manufacturing
Smart buildings are entering a transformative phase, driven by sustainability goals, technological innovation and evolving user expectations. According to ABI Research’s latest whitepaper, the sector is undergoing a strategic overhaul across key areas like retrofitting, energy efficiency, data-driven operations and smart campus development.

Read more...
Digital twin for Bavaria’s National Theatre
Siemens South Africa IT in Manufacturing
Siemens and the Bavarian State Opera are digitalising the acoustics in Bavaria’s National Theatre in Munich, Germany. The result is a digital twin that simulates sound effects, orchestral setups and venue configurations in a realistic 3D acoustic model so that musicians, the director and conductors can assess a concert hall’s acoustics even before the first rehearsal.

Read more...
How AI can help solve South Africa’s water crisis
IT in Manufacturing
Climate change, ageing infrastructure, pollution and unequal access are putting intense pressure on the country’s water systems. A powerful question arises: “Can artificial intelligence help us change course?”

Read more...
Backup has evolved, but has your strategy?
IT in Manufacturing
With cyber threats rising and compliance standards tightening, South African organisations are under growing pressure to revisit their data protection strategies. The era of treating backups as a box-ticking exercise is over.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved