IT in Manufacturing


Three important technologies to slash manufacturing input costs

July 2018 IT in Manufacturing

Local manufacturing firms continue to face headwinds from heightened global competition from countries such as China and India, to sluggish demand and macroeconomic conditions, to critical skills shortages and labour issues. However, technology can help to relieve one of the most common pain points, the stubbornly high cost of production. By using the right digital tools, manufacturers can sustainably reduce their production costs, breathing new life into their margins and ensuring profitable operations.

Three areas in which this can be achieved are:

1. Raw material inventory and production planning

By using digital tags like RFID, plant operators can gain greater insight into materials, equipment, parts and other assets. Combine this with other datasets and it is possible to build up a rich picture of materials as they flow through a factory to eventually become finished products. By knowing exactly where everything is, it becomes easier to plan production, as data is automatically piped into a manufacturing execution system or production lifecycle management system. This means faster logistics and greater throughput of products, as well as increased levels of uptime and productivity – ultimately driving down input costs.

Rapid advances in 3D printing mean that certain parts and materials that are required urgently can be created on-site and at short notice, even further enhancing the management of materials.

One of the leaders in this space is General Electric. The company is reinventing itself with a variety of strategically connected technologies. These include lean manufacturing, additive manufacturing (also known as 3D printing) and advanced software analytics to enhance productivity. At Grove City, GE has used these technologies to reduce unplanned downtime by 10 to 20%, improve cycle time and reduce costs.

2. Predictive maintenance and predictive analytics

With sensors gathering key data on each machine – from humidity, heat, wear and tear, usage times, oil levels, and various other data points – it is possible to start predicting when a machine is likely to fail or require servicing. This principle, known as predictive maintenance, helps to curtail the cost of managing industrial equipment and reduces unexpected downtime as services, repairs and refurbishments can all be scheduled to avoid interrupting production lines.

With findings suggesting that downtime costs the average factory between 5 and 20 percent of its productive capacity, predictive maintenance can be one of the most crucial weapons in the fight against ballooning production costs.

It is possible to extend the principle of predictive maintenance to encompass predictive analytics across the entire factory operations. With predictive alerts coming in from all corners of the factory, it becomes possible to orchestrate the operations more dynamically, changing the daily plan according to fresh data that comes in from along the production line.

3. Proof of concept prototypes

In traditional manufacturing, creating a new prototype for a particular product was a lengthy and extremely expensive endeavour, particularly when the concept turned out to be the wrong one and never progressed into full-scale production. But with cutting edge digital simulations, 3D representations and holograms, it becomes possible to play around with various new prototype designs, testing them with users and getting a tangible feel. By creating sophisticated prototypes in these new ways, the dramatic upfront costs of producing a single unit on the production line are greatly reduced. In this way, rapid prototyping and proof of concept can cut out another layer of cost.

As traditional manufacturers evolve towards smarter and more digital production lines, it is not always easy to know where to invest first to get the greatest ‘bang for your buck’. But by focusing on these three areas, and then building from these foundations and gradually connecting other technologies, manufacturers can address the most pressing pain point, input costs, and set themselves well on the way to reducing the cost of production.

For more information contact Dereshin Pillay, T-Systems South Africa, +27 (0)84 671 5284, [email protected], www.t-systems.com/za/en





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Optimising the product design process
Siemens South Africa IT in Manufacturing
OPmobility is partnering with Siemens to adopt its Teamcenter X Product Lifecycle Management software. OPmobility’s increasingly complex products now include electronics and software, to create energy storage systems, which include battery and hydrogen electrification solutions and fuel tanks.

Read more...
Smart milling for resilient, sustainable food production
IT in Manufacturing
As the global demand for food continues to rise due to increasing urbanisation, the milling industry faces the challenge of balancing efficiency with sustainability. Bühler is committed to making milling more energy-efficient while maintaining high operational performance. Its solutions allow mills to reduce energy costs and ensure long-term sustainability.

Read more...
The evolving landscape of data centres in the age of AI
Schneider Electric South Africa IT in Manufacturing
The data centre industry is undergoing a period of rapid transformation, driven primarily by the explosive growth of AI. It’s clear that the demands of AI are reshaping the very foundations of data infrastructure. This isn’t merely about incremental upgrades; it’s a fundamental shift in how we design, power and operate these critical facilities.

Read more...
SA Food Review
IT in Manufacturing
Food Review is a monthly trade journal for South Africa’s food and beverage manufacturing industry, for industry professionals seeking detailed information on trends, technologies, best practices and innovations.

Read more...
Keeping an eye on oil consumption with moneo
ifm - South Africa IT in Manufacturing
Manufacturing companies in the metal industry need oils and other fluids that are consumed by their machines. To make this consumption transparent and to establish a link to the ERP system, Arnold Umformtechnik relies on the IIoT platform, moneo, in combination with the SAP-based software solution Shop Floor Integration (SFI) – both from ifm.

Read more...
AI accelerates energy transformation
RJ Connect IT in Manufacturing
With the rapid expansion of generative AI applications, data centre power demand is reaching unprecedented levels.

Read more...
Revolutionising mining operations with MineOptimize
IT in Manufacturing
Now more than ever, mining and mineral processing companies need to boost productivity, ensure safety, and protect the environment. ABB’s comprehensive electrification, automation and digital solutions portfolio is ideally positioned to meet these challenges across all mining processes, from mine to port, transforming performance in a digital world.

Read more...
Buildings in Africa’s urban evolution
Schneider Electric South Africa IT in Manufacturing
Africa is now an urban continent. How does the continent mobilise to accommodate urban dwellers and maintain and implement critical infrastructure that allows for this expansion? Building management systems provide a tangible solution to optimise resource use, lower operations costs and ultimately contribute to a growing continent that also employs green practices.

Read more...
TwinCAT Vision functionality extended
Beckhoff Automation IT in Manufacturing
The image processing and camera integration capabilities of Beckhoff’s TwinCAT 3 Vision software have been expanded.

Read more...
Automation software to future-proof your operations
Adroit Technologies IT in Manufacturing
As the official partner of Mitsubishi Electric Factory Automation, Adroit Technologies empowers businesses with cutting-edge solutions that reduce costs, improve quality and increase productivity.

Read more...