Editor's Choice


Nick Denbow’s European report: Technology disruption and profiting from university R&D

June 2018 Editor's Choice

It is almost a part of engineering folklore that the UK is slow to realise the potential of its inventions. The jet engine, computing and television are perhaps the best-known examples of British inventions whose financial benefits were mainly exploited by other nations. Lithium-ion technology is another that was developed in Britain, in fact in Oxford, but was commercialised mainly in the US and East Asia. However, this was not a failure of foresight but merely a misfortune of timing – the initial invention came many years before the development of mobile phones and camcorders which were the most fruitful early applications for lithium-ion batteries. The Faraday Institution was then set up as the UK’s independent centre for electrochemical energy storage science and technology, supporting research, training, and analysis. Its function is to bring together expertise from universities and industry, and they are attempting to make the UK the go-to place for the research, development, manufacture and production of new electrical storage technologies for both the automotive and the wider relevant sectors.

Accelerated technology development

Building on this general approach, the Royal Academy of Engineering has now established a scheme as part of the UK Government National Productivity Investment Fund, to accelerate the development and commercialisation of other emerging technologies within the UK. This will involve the establishment of 10 new University ‘Chairs in Emerging Technologies’ at UK universities: this scheme will identify research and innovation visionaries and provides them with long-term support to enable them to build a global centre of excellence focused on emerging technologies with high potential to deliver economic and social benefit. This type of public investment has been seen to be highly effective in stimulating co-investment from the private sector, enabling the UK to secure an early foothold in a potentially important future market and preventing UK companies from losing their competitive advantage as other countries get involved.

The UK magazine The Engineer explained both the diversity of technologies and disciplines represented among the chairs selected and the breadth of societal challenges and economic opportunities that have motivated the world-leading engineers appointed, as follows:

• One chair focuses on technologies with strong medical applications. It has the objective to deliver a step change in personalised medicine by engineering cells that can combine precise disease diagnosis with therapeutic intervention in a closed loop circuit – to prevent the disease developing or provide a cure. This is sometimes called ‘theranostics’.

• Another focuses on reducing the burden of brain disorders. The goal of the chair is to accelerate the translation of therapeutic bioelectronic systems – for example a ‘brain pacemaker’ – from laboratory to industry.

Artificial intelligence, robotics and materials science

AI and robotics also had strong representation among the chairs selected. For example, one chair addresses the technologies underpinning soft robotics, which have the potential to impact upon many areas of our lives, from implantable medical devices that restore function after cancer or stroke, to wearable soft robotics that will keep us mobile in our old age – plus biodegradable robots that can combat pollution and monitor the environment. Other chairs address issues of safety and reliability associated with AI and robotic systems – a topic of great societal importance and current interest.

Two other chairs focus on driving improvements in materials that underpin important industrial and societal applications. One will develop novel interactive technologies using acoustic metamaterials; another is targeted at optimisation of next generation battery materials for improved cost, performance and durability.

Others of the chairs draw upon recent advances in the physical sciences to address novel areas. They include radical new space technologies that will underpin entirely new satellite applications; an integrated approach to two-dimensional classical and quantum photonics; and a platform for multiscale industrial design, from the level of molecules to machines.

The CET scheme steering group were deeply impressed by the quality of the applications for these chairs that they reviewed, which bodes well for the UK’s ability to continue to be at the leading edge of technology disruption. Nevertheless, it is notoriously difficult to forecast which technologies will turn out to have the most significant impacts over the long term. It would appear that the major problem will be to attract long-term technology investment from UK companies, who are notoriously short term in their views on financial payback and investment decisions.

Nick Denbow spent 30 years as a UK-based process instrumentation marketing manager, and then changed sides – becoming a freelance editor and starting Processingtalk.com. Avoiding retirement, he published the INSIDER automation newsletter for five years, and then acted as their European correspondent. He is now a freelance Automation and Control reporter and newsletter publisher, with a blog on www.nickdenbow.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Swiss watchmaking meets hypercar power
Horne Technologies Editor's Choice
The display of Bugatti’s upcoming luxury model, Tourbillon will be something truly special. Instead of a digital version, the driver will see a genuine Swiss timepiece behind the steering wheel.

Read more...
Reinventing the wheel
Editor's Choice
Once a curiosity in the early automotive age, in-wheel motors are now re-emerging with real promise. From electric cars to commercial vehicles and even aircraft, they are on the verge of transforming transportation engineering.

Read more...
Creating new magnets for electric motors
Editor's Choice
Innomotics, a global specialist in electric motors and large drive systems, is coordinating a consortium for a research project on ‘Integrated Product and Process Innovation for Electric Drives’.

Read more...
Sustainability is transforming fluid power
Editor's Choice Motion Control & Drives
Sustainability is reshaping the future of fluid power. With the growing demand for cleaner, more efficient technologies and tightening global regulations, fluid power systems are being re-engineered for higher efficiency, lower emissions and reduced material usage.

Read more...
The power of water
Editor's Choice Electrical Power & Protection
The Alpenglow Hy4 is the world’s first water-based hydrogen combustion engine, offering a convincing alternative to traditional battery-electric vehicles and established hydrogen fuel cell designs.

Read more...
Optimising purification for green hydrogen production
Parker Hannifin - Sales Company South Africa Editor's Choice Electrical Power & Protection
Parker Hannifin delivers advanced purification and thermal management components that enhance green hydrogen production.

Read more...
A new chapter in geothermal engineering
Editor's Choice Electrical Power & Protection
The town of Geretsried in southern Germany has become a focal point in the global shift toward renewable energy. While the world’s attention often turns to wind turbines and solar panels, a quieter but no less powerful force is at work deep beneath the surface, geothermal energy.

Read more...
Harnessing the ocean with wave energy
Editor's Choice Electrical Power & Protection
Wave energy is emerging as one of the most promising yet underutilised renewable sources. Tapping into the rhythmic, predictable power of ocean waves, this technology offers a clean, reliable alternative to fossil fuels and a valuable complement to wind and solar energy.

Read more...
Leading the way to the all-electric mine
ABB South Africa Editor's Choice IT in Manufacturing
Decarbonising the mining sector requires more than just new technology. ABB eMine provides a strong portfolio of electrification and automation solutions, consulting, partnerships and technology applications to support mining operations to reduce emissions and achieve operational cost savings and superior efficiency.

Read more...
Speeding up warehouse automation
Rockwell Automation Editor's Choice Motion Control & Drives
Bastian Solutions designs and delivers world-class material handling systems. The company was engaged by a high-end global fashion brand to implement a new warehouse system. Bastian used Rockwell Automation Emulate3D digital twin software to test the system before it was installed and went live.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved