Editor's Choice


Compact drive technology from Beckhoff used in Synlight radiator

November 2017 Editor's Choice

The DLR Institute of Solar Research in Jülich, Germany, recently put the Synlight high-flux solar simulator into operation. This high-power radiator – the only one of its kind in the world so far – consists of 149 radiators, each with the light power of a large cinema projector. Together, they generate light intensity corresponding to at least 10 000 times the intensity of natural solar radiation measurable on the earth’s surface. Three embedded PCs connected with 447 stepper motor terminals from Beckhoff enable highly precise alignment of the individual radiators.

The focus of the Synlight facility is the development of production processes for solar fuels, i.e. fuels that are generated using solar energy. In addition, researchers and industrial partners in the solar thermal power plant or aerospace industries will find ideal conditions for tests of their full-size components. One such application is the efficient production of hydrogen as a CO2-neutral energy source. In order to split water into hydrogen and oxygen, the solar simulator heats metal to a temperature of 800°C. When steam is added, the metal reacts with the oxygen in water and the hydrogen is released. The oxygen is then separated from the metal again by further heating to 1400°C.

High radiation power and precise focus capabilities

Synlight’s novel modular design is unique in its use of 149 individually adjustable xenon short-arc lamps with a light spectrum very similar to the sun. These enable radiation powers of up to 1x300 kW and 2x240 kW in three separately usable radiation chambers. According to Dr Dmitrij Laaber, the control specialist responsible for Synlight at DLR, the artificial sun achieves around 10 times higher power output than conventional laboratory systems.

Two of the three test chambers have been specially designed for solar-chemical process development testing and offer direct access to gas scrubbers and neutralisers, permitting the qualification of processes in the production of solar fuels. The shutter sizes measuring 4 m in width and height, as well as room heights of 5 m, offer the possibility to irradiate large elements, such as spaceflight components. A fundamental feature of Synlight is its multi-focus capability. This allows the light beam to be precisely focussed (even in subsets) and used as required, either for one large application or divided among a number of small test beds.

Compact and system-integrated drive control

The internally mirrored lamp shades used as reflectors have a diameter of 1 m and are mounted in a honeycomb pattern on an area measuring 14 m high and 16 m wide. PC-based control technology from Beckhoff ensures exact alignment and positioning of the individual reflectors to achieve the desired radiation focus. Each radiator is individually controllable, and as a result, highly diverse layouts and temperatures can be created at the target point – even when three tests take place in parallel. The numerous stepper motors required for this purpose are controlled by a total of 447 space-saving KL2541 and KL2531 stepper motor terminals directly integrated into the modular I/O system. These are in turn connected to three CX5130 Embedded PCs via 50 BK9000 Ethernet TCP/IP bus couplers.

The KL2541 stepper motor terminals with incremental encoder are designed for the medium performance range with an output of 50 VDC at 5 A. These devices integrate PWM output stages for a wide range of voltages and currents, as well as two inputs for limit switches in the extremely compact form factor of a 24 mm bus terminal. The KL2531 terminals, measuring only 12 mm wide and rated for 24 VDC at 1,5 A, are suitable for integration with a great variety of small stepper motors.

According to Laaber, the advantages in practical use are immediately apparent, due to the large number of drive controllers: “If we had used conventional stepper motor controllers, the necessary 447 individual devices would have required a huge amount of space. Not only that, we would have had to connect each device with its own network cable, and that would have been enormously complex, intricate and prone to errors. Conversely, the current solution is much more convenient and compact, especially when one considers that the terminals are distributed over five levels in 10 terminal boxes. We have also benefited from TwinCAT software, because a pure automation environment such as TwinCAT is much simpler to program than a solution based on high-level languages, which is what stepper motor manufacturers usually offer.”

For more information contact Michelle Murphy, Beckhoff Automation, +27 (0)11 795 2898, [email protected], www.beckhoff.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Pluggable system solution helps tackle skills shortages and addresses DC power supply needs
Beckhoff Automation Enclosures, Cabling & Connectors
As a replacement for the conventional control cabinet, the MX-System from Beckhoff is a uniform modular automation system that can be used to completely replace traditional control cabinets with function modules in many applications.

Read more...
Swiss watchmaking meets hypercar power
Horne Technologies Editor's Choice
The display of Bugatti’s upcoming luxury model, Tourbillon will be something truly special. Instead of a digital version, the driver will see a genuine Swiss timepiece behind the steering wheel.

Read more...
Reinventing the wheel
Editor's Choice
Once a curiosity in the early automotive age, in-wheel motors are now re-emerging with real promise. From electric cars to commercial vehicles and even aircraft, they are on the verge of transforming transportation engineering.

Read more...
Creating new magnets for electric motors
Editor's Choice
Innomotics, a global specialist in electric motors and large drive systems, is coordinating a consortium for a research project on ‘Integrated Product and Process Innovation for Electric Drives’.

Read more...
Sustainability is transforming fluid power
Editor's Choice Motion Control & Drives
Sustainability is reshaping the future of fluid power. With the growing demand for cleaner, more efficient technologies and tightening global regulations, fluid power systems are being re-engineered for higher efficiency, lower emissions and reduced material usage.

Read more...
PC-based control for advanced hydrogen storage technology
Beckhoff Automation Fieldbus & Industrial Networking
Sufficient storage options for renewable energies are essential to use them as efficiently as possible. GKN Hydrogen offers a particularly compact and safe option, low-pressure metal hydride hydrogen storage systems with PC-based control from Beckhoff.

Read more...
The power of water
Editor's Choice Electrical Power & Protection
The Alpenglow Hy4 is the world’s first water-based hydrogen combustion engine, offering a convincing alternative to traditional battery-electric vehicles and established hydrogen fuel cell designs.

Read more...
Optimising purification for green hydrogen production
Parker Hannifin - Sales Company South Africa Editor's Choice Electrical Power & Protection
Parker Hannifin delivers advanced purification and thermal management components that enhance green hydrogen production.

Read more...
A new chapter in geothermal engineering
Editor's Choice Electrical Power & Protection
The town of Geretsried in southern Germany has become a focal point in the global shift toward renewable energy. While the world’s attention often turns to wind turbines and solar panels, a quieter but no less powerful force is at work deep beneath the surface, geothermal energy.

Read more...
Harnessing the ocean with wave energy
Editor's Choice Electrical Power & Protection
Wave energy is emerging as one of the most promising yet underutilised renewable sources. Tapping into the rhythmic, predictable power of ocean waves, this technology offers a clean, reliable alternative to fossil fuels and a valuable complement to wind and solar energy.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved