Editor's Choice


A comet chaser stirs

August 2015 Editor's Choice

4:33 AM 14 June 2015. “Hello Earth! Can you hear me?” A lonely robot, freezing on an isolated space fragment, cheerily reaches out through Twittersphere to herald its reawakening. Seven months after being forced into an ultra low-power state of hibernation, the Rosetta Mission’s Philae lander has finally stirred from its slumber on the icy surface of Comet 67P/Churyumov-Gerasimenko, some 600 million kilometres away.

In November 2014, Philae had touched down to global applause as it became the first spacecraft ever to land on the nucleus of a comet. But, it had come to rest in the shadow of a crater. With its solar panels now unable to harvest the sunlight required to keep the batteries charged, the diminutive craft had been able to work only 60 hours before being obligated to 'go dark' in the primordial wilderness it had come to explore.

As luck would have it, Comet 67P’s elliptical orbit has now changed its position relative to the sun just enough for the rays to light up the solar panels of Philae’s outer shell. This is what breathed life back into the little comet chaser, including the 14 Faulhaber drive systems which defied the harsh conditions of the 10-year journey through the vacuum and low temperatures of space.

The harpoon system / Photo: DLR.
The harpoon system / Photo: DLR.

Because of the small size of the comet, about the size of Mt. Fuji in Japan, the force of gravity is very low in the region making it difficult to ensure a secure stance on the surface. Thus, the Max-Planck-Institut for Extraterrestrial Physics developed a special anchor system for the probe. Immediately after ground contact on landing, two harpoons were to be shot by a propellant charge into the surface of the comet to lodge into it. (Barbs were provided to prevent these anchor fittings from tearing themselves loose again.) As each harpoon shot out, it would have unwound a cable from a circular magazine. By means of a Faulhaber 1628 series brushless servomotor with a 16/7 planetary gearhead, this cable would then be wound back onto a drum until taut in order to secure the probe to the surface. At least that was the plan – unfortunately the harpoons were not fired, the rewinding mechanism was not used, and Philae ended up bouncing three times eventually coming to rest in a crater. Nevertheless, the miniature laboratory was still able to begin its analyses as planned.

Landing gear and sample analysis

During the landing phase, other motors had further important tasks to perform in order to transform the kinetic energy generated during the landing into electrical energy and finally into heat using a spindle drive. A Faulhaber 3557 series bell-type armature motor was connected directly through an external resistor and operated as a generator in this case.

Additional drives from the 1224 series were used in the three-legged landing gear of the craft in order to swivel or rotate the upper part by means of a cardan joint, so that the solar panels would always remain optimally aligned. Microdrives were also needed for taking samples: the lander has a drill that feeds core samples into an oven for pyrolysis. Small 1016 series motors with 10/1 planetary gearhead drive a cam via a worm arrangement. This provides feed to a ceramic breech piece on the oven and simultaneously closes the electrical contacts for the oven heating element. The combustion gases generated in the furnace are then routed through tubes in the oven latch to the scientific instruments for analysis. During its first scientific phase, which lasted a total of 60 hours, the lander performed all of the planned scientific measurements on the comet surface. Philae successfully transmitted this data to the Lander Control Centre before it went into hibernation. Now that the orbit has shifted and its upper part is better aligned with the sun, Philae has revived itself and is once again ready to perform the galactic research for which it was designed. The European Space Agency regards the mission as a complete success, but evaluation of all the received data will take some time.

Outer space and its demands

The demands that outer space place on these drives are high: every kilo of mass that is shot into space costs energy, i.e. fuel – hence money too. Therefore, small, light solutions are sought. At the same time, however, they must also be able to withstand the enormous vibration and acceleration forces during take-off, as well as the constant very-low temperatures and the many years of vacuum conditions prevailing in outer space.

Because cost also plays a major role when selecting components for space projects, the developers wanted to do without costly custom developments if at all possible. Accordingly, they first looked for standard products which complied with as many of their specifications as possible. They found what they were looking for in the comprehensive drive systems product range from Faulhaber. The standard drive solutions fulfilled all mechanical requirements, and the special conditions in space could then be met by making comparably few modifications at negligible additional cost.

For more information contact David Horne, Horne Technologies, +27 (0)76 563 2084, [email protected], www.hornet.cc



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Swiss watchmaking meets hypercar power
Horne Technologies Editor's Choice
The display of Bugatti’s upcoming luxury model, Tourbillon will be something truly special. Instead of a digital version, the driver will see a genuine Swiss timepiece behind the steering wheel.

Read more...
Reinventing the wheel
Editor's Choice
Once a curiosity in the early automotive age, in-wheel motors are now re-emerging with real promise. From electric cars to commercial vehicles and even aircraft, they are on the verge of transforming transportation engineering.

Read more...
Creating new magnets for electric motors
Editor's Choice
Innomotics, a global specialist in electric motors and large drive systems, is coordinating a consortium for a research project on ‘Integrated Product and Process Innovation for Electric Drives’.

Read more...
Sustainability is transforming fluid power
Editor's Choice Motion Control & Drives
Sustainability is reshaping the future of fluid power. With the growing demand for cleaner, more efficient technologies and tightening global regulations, fluid power systems are being re-engineered for higher efficiency, lower emissions and reduced material usage.

Read more...
The power of water
Editor's Choice Electrical Power & Protection
The Alpenglow Hy4 is the world’s first water-based hydrogen combustion engine, offering a convincing alternative to traditional battery-electric vehicles and established hydrogen fuel cell designs.

Read more...
Optimising purification for green hydrogen production
Parker Hannifin - Sales Company South Africa Editor's Choice Electrical Power & Protection
Parker Hannifin delivers advanced purification and thermal management components that enhance green hydrogen production.

Read more...
A new chapter in geothermal engineering
Editor's Choice Electrical Power & Protection
The town of Geretsried in southern Germany has become a focal point in the global shift toward renewable energy. While the world’s attention often turns to wind turbines and solar panels, a quieter but no less powerful force is at work deep beneath the surface, geothermal energy.

Read more...
Harnessing the ocean with wave energy
Editor's Choice Electrical Power & Protection
Wave energy is emerging as one of the most promising yet underutilised renewable sources. Tapping into the rhythmic, predictable power of ocean waves, this technology offers a clean, reliable alternative to fossil fuels and a valuable complement to wind and solar energy.

Read more...
Leading the way to the all-electric mine
ABB South Africa Editor's Choice IT in Manufacturing
Decarbonising the mining sector requires more than just new technology. ABB eMine provides a strong portfolio of electrification and automation solutions, consulting, partnerships and technology applications to support mining operations to reduce emissions and achieve operational cost savings and superior efficiency.

Read more...
Speeding up warehouse automation
Rockwell Automation Editor's Choice Motion Control & Drives
Bastian Solutions designs and delivers world-class material handling systems. The company was engaged by a high-end global fashion brand to implement a new warehouse system. Bastian used Rockwell Automation Emulate3D digital twin software to test the system before it was installed and went live.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved