Electrical Power & Protection


Using wind energy efficiently

March 2014 Electrical Power & Protection

To achieve change in energy policy, innovative technology for power generation is needed. Unfortunately, many alternative concepts are based on inventions that are more reminiscent of the steam engine era than of modern solutions. Without a doubt, this technology also works. However, like the steam locomotive, it rather contradicts an ecological approach.

A great amount of material is needed to construct windmills, since the rotor and the heavy generator act on the tower with bending moments and with enormous static loads. Overload events complicate the dilemma: a tower cannot simply be retracted in the event of a hurricane. To dissipate the forces, massive concrete or pile foundations, which are a major cost-factor and require a large amount of energy, are therefore needed. With respect to their size and expense, the subterranean structures look more like the 2 m thick steel domes of nuclear reactors than ecological structures. Off the coast, the manufacture of the foundations is particularly complex and expensive, and dismantling after use is rather doubtful.

Today, ecologically-generated power is a sought-after source of energy. But, how is ‘ecological’ defined? Does it refer only to the generation of power, or does the manufacture of the turbine flow into the calculation? Cement and steel plants are front and foremost when it comes to industrial energy consumption. Large foundations and giant steel towers have an ecological cost even before the first kWh flows. The EnerKite Company is therefore taking a new approach: it is using slim solutions that concentrate on the key components needed to utilise wind power. A steerable kite transfers the energy of the wind to a generator via a rope. A fully automatic control holds the functional component, ie, the kite, at high altitude in the best wind window – this ensures high efficiency. To be able to respond quickly to wind gusts, drives from Faulhaber aid in controlling the kite.

While the kites operate according to an ancient principle for utilising the wind, the method is refined through the use of modern material and control technology. In order to produce power, a generator is needed in which a magnetic field rotates in a coil. Conventionally, the rotational movement is transferred via heavy, rigid rods and shafts. The developers from Berlin instead use lightweight, high-performance ropes made of heavy-duty fibres for power transmission. Peter Kövesdi, design engineer and specialist for wind systems at EnerKite, offers a comparison: “Just like you can use thin spokes placed under tension to make a wheel that uses much less material than one which is solid, ropes can be used to transfer large forces with very little material.”

Focus on efficiency

With the EnerKite, a parafoil is brought to a height of approximately 100 m. There, unlike on the ground, the wind blows constantly, largely free of turbulence and at higher speed. One load rope and two control ropes transfer the pulling force of the kite to three generator drums. The kite is then pulled by the wind automatically from 100 m to 300 m, thereby generating the effective power. Once it has reached the maximum altitude, the kite is controlled in such a way so as to turn it out of the wind and the ropes are quickly drawn in. Very little energy is necessary for this purpose. Afterwards, the kite begins to climb, thereby generating power again.

Kövesdi compares the aerodynamic properties of the kite as follows: “The advantage of the kite over windmills is the better utilisation of the wind, as there is no turbulence caused by upwind rotor blades or by the tower. The kite is also always at an altitude in excess of 100 m and not, like the rotors, intermittently closer to the ground and intermittently higher than the tower. Thus, the technology can be designed for more uniform loading; in the event of a storm, the kite can be drawn in. This, too, reduces construction costs. The slow movement of the rope while the kite is close to the ground prevents collisions with birds, and the soft parafoil eliminates the risk of falling ice, as ice accumulations quickly flake off.”

At sea, simple anchor buoys suffice for securing the generator pontoon; on land the turbine can be both stationary as well as mobile. Large access aisles for giant rotor blades and tower elements are not necessary. A kite can simply be rolled up like a tent; the same applies to the ropes.

Exact control in the wind

In addition to the towing rope, two so-called steering ropes are attached to the kite. In the language of kite experts, the EnerKite is a three-liner. The fully automatic control was one of the main obstacles to making the new technology suitable for practical use. The experts now have a handle on the programming, but the best control is only as good as the executing actuator permits. Here, the microdrives from Faulhaber come into play. Ropes can only be precisely wound on rope drums while under tension. Since, the wind is a dynamic system with short term fluctuations, so-called negative gusts can allow the control rope to sag at short notice. This is not a problem for the flight characteristics, but a no-go for the rope drums. The developers therefore placed a rope tensioner in front of the winding drum that always ensures a defined rope tension at the drum. At winding speeds of 20 to 30 m/s, the tension motor needs to operate at speeds that can exceed 10 000 rpm and must be able to respond to demands for changes in speed. An electronically commutated standard motor with an output power of approximately 200 W was able to deliver the required performance. The motor is connected to a robust planetary gear-head and the high torque to maintain pressure is thus ensured. A motion controller matched to the motors relieves the EnerKite control of motor management and allows the dynamics of the microdrives to be used optimally.

With this application, the motto is ‘small but efficient’, as the microdrives perform a substantial part of the work in controlling the new wind power generator. They ensure that the kite can respond quickly to changes in the wind and that the new material saving system safely functions in practical operation. Drives right off the shelf could be used to implement the specifications, and in difficult situations, small changes to components facilitate optimum operation. The use of microdrives is limited more by imagination than by technology. The application described here illustrates practically that even unusual ideas can be implemented.

For more information contact David Horne, Horne Technologies, +27 (0)76 563 2084, [email protected], www.hornet.cc



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Grid to backup power in zero seconds
Electrical Power & Protection
South Ocean Electric Wire has completed a solar installation that marks a global first: a seamless switch from grid to backup power in zero seconds.

Read more...
Three decarbonisation myths and how organisations can debunk them
Schneider Electric South Africa Electrical Power & Protection
A UN Climate Change Report revealed that the world is on track to miss its 2050 net zero targets, with temperatures expected to increase by over 2,4°C by 2100. To help shift positive intent to concrete action, Schneider Electric outlined three of the most common myths surrounding decarbonisation and how organisations can get started on their decarbonisation journey.

Read more...
Tackling the barriers of renewables and empowering the manufacturing sector
Electrical Power & Protection
Solar energy is surging in South Africa, but the energy is primarily self-consumed, meaning many manufacturing sites draw power directly and don’t gain more energy independence through comprehensive energy storage or hybrid energy solutions.

Read more...
Three-phase filters for electromagnetic interference
Vepac Electronics Electrical Power & Protection
Vepac Electronics has available three-phase filters that provide a solution to electromagnetic interference generated by equipment or from an AC source.

Read more...
The age of grid defection is upon us
Electrical Power & Protection
Solar and battery systems have got so cheap that many private individuals, farmers and companies are waking up to the fact that in many locations in South Africa it is now less expensive to be off the electrical grid than to be on it.

Read more...
Measure the electrical performance of your machinery
Vepac Electronics Electrical Power & Protection
The TELE eCap from Vepac Electronics allows you to use energy wisely and reduce operational expenses.

Read more...
Connectors for quick, easy and tool-free in-field termination
Electrical Power & Protection
KYOCERA AVX has released the new 9288-000 Series hermaphroditic wire-to-wire and wire-to-board connectors for lighting and industrial applications. These unique two-piece connectors facilitate WTW termination with two identical mating halves, which simplifies BOMs.

Read more...
Biomass is building up steam
Electrical Power & Protection
Pressure is mounting for local manufacturers to swap fossil fuels for biomass to reduce their carbon footprints and mitigate carbon taxes. Experienced steam and boiler operations and maintenance service provider, Associated Energy Services has spent the past 14 years reviewing solutions.

Read more...
Würth Elektronik expands its power module series
Electrical Power & Protection
Würth Elektronik has expanded its successful MagI³C-VDLM power module series with two new models that further enhance the performance of the existing portfolio of compact DC/DC power supply modules.

Read more...
The journey towards renewable energy in the Seychelles
Electrical Power & Protection
The Seychelles is committed to its ambitious goal of achieving net-zero carbon emissions by 2050. Recent technological advancements and strategic planning are steadily paving the way for a more sustainable future.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved