Electrical Power & Protection


Overload protection

September 2008 Electrical Power & Protection

Circuit breaker technologies.

Each component of an electrical installation is designed for use at a particular rated current. When the component is used within the designed current limit it will have a specific service life expectancy, which is the length of time for which the insulation will remain operationally safe.

When a component is overloaded, the temperature in the insulation exceeds the design limit, the insulation begins to deteriorate and the service life will be reduced. Quantitatively, this deterioration depends on both the temperature rise and time for which the insulation is exposed to the overload. Precautions should be taken to avoid, or at least reduce to a minimum, overloading of electrical components. An overload condition can be detected by monitoring the current flowing into an item of equipment and the time for which it flows.

The method of overload sensing incorporated into circuit breakers is usually achieved through one of three different technologies:

* Solid-state electronic sensing.

* Thermal-magnetic sensing.

* Hydraulic-magnetic sensing.

Hydraulic-magnetic mechanism as current increases
Hydraulic-magnetic mechanism as current increases

Solid state electronic sensing

This technology is often combined with microprocessor controllers and is generally restricted to larger frame circuit breakers due to cost considerations.

Hydraulic-magnetic mechanism showing trip bar activated
Hydraulic-magnetic mechanism showing trip bar activated

Thermal sensing

This is the oldest technology and has been used since the first appearance of miniature and moulded case circuit breakers. Thermal sensing components such as bimetals, are supported by instantaneously operated magnetic trips for short circuit protection.

Hydraulic-magnetic mechanism remains latched after trip
Hydraulic-magnetic mechanism remains latched after trip

Hydraulic-magnetic sensing

This technology is widely used in South Africa and eliminates the inconvenience of early tripping of thermally operated circuit breakers at elevated ambient temperatures. Hydraulic-magnetic circuit breakers have the advantage of more accurate calibration of tripping curves and make possible a variety of tripping curves to suit application-specific requirements including fractional ampere ratings.

Hydraulic-magnetic circuit breakers operate on the principle of the opposing forces of a spring and a viscous fluid controlling the magnetic attraction on a ferrous piston inside a non-magnetic cylinder. The design has both a time delay operation (overload trip) and an instantaneous operation in the case of a short circuit.

Hydraulic-magnetic mechanism at low current
Hydraulic-magnetic mechanism at low current

When an overcurrent occurs, the magnetic force produced in the coil overcomes the core spring and the core moves towards the pole piece. The closer the core gets to the pole piece, the more magnetised the pole piece becomes. This attracts the armature, which in turn actuates the trip bar. The viscosity of the fluid and the characteristics of the spring govern the time delay. If the overcurrent is excessive, the magnetic field is such that the armature is immediately attracted to the pole piece without the influence of the core.

For more information contact CBI-electric: low voltage, +27 (0)11 928 2000, [email protected], www.cbi-electric.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Setting new standards in dry-type transformer technology
Electrical Power & Protection
Dry-type transformer technology is gaining ground globally, and leading the charge in Africa is Trafo Power Solutions, in partnership with Italian manufacturer, TMC Transformers.

Read more...
Advanced process control for the IRP
Schneider Electric South Africa Electrical Power & Protection
One of the main challenges in implementing South Africa’s Integrated Resource Plan is ensuring grid stability while integrating renewable energy sources and balancing fluctuating energy demands. Advanced process control can play an important role.

Read more...
Revolutionising fault location and maximising solar production
Comtest Electrical Power & Protection
Comtest has on offer the Fluke GFL-1500 solar ground fault locator, a frontline troubleshooting tool that helps technicians pinpoint active ground faults in solar photovoltaic systems.

Read more...
Supporting the AI boom with power architecture
Electrical Power & Protection
Hitachi Energy is supporting the 800 VDC power architecture announced by Nvidia, by developing a cleaner, more efficient way to power the next generation of AI infrastructure.

Read more...
Kyocera releases new stacked capacitors
Electrical Power & Protection
Kyocera AVX has released the new KGP Series commercial-grade stacked capacitors for high-frequency applications in the industrial and downhole oil and gas industries.

Read more...
More sustainable tyres
Electrical Power & Protection
Continental is prioritising the use of renewable and recycled materials in its tyre production

Read more...
World’s first hydrogen-powered driverless tractor
Electrical Power & Protection
Kubota has unveiled the world’s first hydrogen fuel cell tractor with a self-driving function.

Read more...
ABB drives rail modernisation and EV growth in South Africa
Electrical Power & Protection
ABB’s work in Africa in low- and medium-voltage infrastructure, safety-critical components and electrification puts it at the heart of accomplishing the Southern African Railways Association’s strategy.

Read more...
Revolutionising electrical infrastructure through digital innovation
Schneider Electric South Africa Electrical Power & Protection
In today’s rapidly evolving industrial and commercial landscapes, the integrity of electrical infrastructure has become a non-negotiable priority.

Read more...
Hitachi Energy’s power quality solution
Electrical Power & Protection
Hitachi Energy has announced the deployment of its power quality solution to connect Tanzania’s leading gold producer, Geita Gold Mine (GGML) securely to the national grid.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved