IT in Manufacturing


Key considerations when designing IIoT networks for smart businesses

October 2018 IT in Manufacturing

In the era of the IIoT, industries have opportunities to become more productive, more efficient and more dynamic. For example, the IIoT provides businesses with new capabilities such as dashboards that show device status and data in real-time, as well as the on-demand production of customised products. However, many applications still have to overcome several networking challenges before they can really reap the benefits. A successful IIoT strategy is driven by a number of key factors related to connectivity. This article takes an in-depth look at three of these key points.

In the era of the IIoT, industries have opportunities to become more productive, more efficient and more dynamic. For example, the IIoT provides businesses with new capabilities such as dashboards that show device status and data in real-time, as well as the on-demand production of customised products. However, many applications still have to overcome several networking challenges before they can really reap the benefits. A successful IIoT strategy is driven by a number of key factors related to connectivity. This article takes an in-depth look at three of these key points.

1. Interoperability with existing and new machines

Within the automation industry, companies typically purchase equipment that they will use for decades. When new trends evolve, such as the IIoT, business owners do not want to replace their existing equipment, but rather want solutions that allow them to incorporate their unconnected legacy devices into modern solutions. Broadly speaking, two options are available to them:

Protocol gateways for multi-language connectivity

Industrial protocol gateways convert and connect legacy equipment with one unified communication protocol before transporting data to IT systems, for example, converting different proprietary industrial protocols used by legacy devices into one more common protocol, such as Modbus/TCP, Ethernet/IP, or Profinet. This simplifies OT engineers’ efforts when they need to extract data from multiple sensors and machines that use different communication protocols.

OPC UA to future-proof a network design

When it comes to newly purchased devices, supporting OPC Unified Architecture (UA) protocols is essential. OPC UA is platform independent and ensures a seamless flow of information among devices from multiple vendors. Originally, OPC UA worked on a client-server model, but when dealing with hundreds or thousands of devices that all need to be interconnected across multiple sites, a more scalable solution was needed. This led to the adoption of the publisher-subscriber model (PubSub), which allows for more streamlined communication that offers improved scalability and resilience. Furthermore, PubSub also extends the OPC UA protocol to cloud-based communication in the automation industry.

2. Facilitating communication between the OT and IT with IIoT gateways

Close cooperation between IT and OT professionals is fundamental to leverage any smart application’s IIoT platform. To be successful, both domains need access to industrial data. IT departments, which oversee enterprise resource planning (ERP) and sometimes MES, need to review this data to form the bigger picture and then develop solutions for each of the issues that hamper an operation’s reliability. OT professionals are more closely involved with the physical operations on the factory floor and have to figure out how to make all the divergent systems, fitted mostly with proprietary technologies, work together. Business owners must find a suitable solution to allow these two groups of people and two different sets of protocols to work together.

IIoT gateways are frequently used to bring the OT and IT worlds together. They will continue to play an important role in IIoT networks in the foreseeable future because these networks do not currently use a set of universal protocols. Direct transmission of vast amounts of data across these networks can lead to network latency, and IT personnel have to put in a lot of extra effort to identify useful data, resulting in delayed data analytics. To deal with this, there are some features that gateways should support to make the process more effective.

Smart processing capabilities: as gateways are deployed across many different applications, each gateway should have specific rules so that only the information useful to that application is passed to the cloud where the data will be analysed. As the data is filtered before it is transmitted to IT applications, the transmission times are shortened and the operators only have the relevant data, which allows them to perform more accurate data analysis.

Secure remote communication: in order to prevent data stored on the gateway from being tampered with, it should be secured with a file protection system such as Trust Platform Modules (TPM). For remote connections, a VPN should be used to connect the control centre and the gateway.

3. Ensuring network security from LAN-centric to LAN/WAN convergence

With multiple devices connected on the same network, all entry points can be vulnerable to unauthorised access if proper security measures are not taken. This problem is exacerbated by the fact that many industrial protocols were not designed with cybersecurity in mind. As devices now frequently connect to the Internet, they can be open to remote access over that network because legacy protocols rarely support encryption or user authentication. The problem business owners need to overcome is how to ensure that their networks are protected now and into the future as networks continue to evolve.

Many system operators have stated that the best way to secure a network against cyberattacks is to use the defence-in-depth security architecture, which is designed to protect individual zones and cells. Any communication that needs to take place across these zones or cells must be done through a firewall or VPN. Deploying this type of architecture reduces the chance that the whole network will fail due to an attack, because each layer is able to address a different security threat. It also reduces the risk to the entire network. If a problem occurs in one part of the network, there is a higher chance that the problem can be contained within that layer and will not spread to the other layers.

After the network has been secured, the next step to consider is how to ensure that users cannot adversely change settings by accident, or on purpose. This problem can arise from users who operate and manage the network, third-party system integrators, and contractors that are required to perform maintenance on the network. The best way to secure against this threat is to enhance the network devices’ cybersecurity to ensure that they cannot have their settings altered in a way that puts the devices or the network at risk. Many cybersecurity experts view the IEC 62443 standard as the most relevant publication for how to secure devices on industrial networks. This standard includes a series of guidelines, reports, and other relevant documentation that define procedures for implementing electronically secure IACS (industrial automation & control systems) networks.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Addressing the cooling needs of the modern data centre
Schneider Electric South Africa IT in Manufacturing
The rise in hardware density in data centres is gaining speed and is largely driven by the demands of artificial intelligence and machine learning, requiring more powerful servers and specialised hardware.

Read more...
South Africa’s next cyber security frontier
IT in Manufacturing
AI-powered agents are rapidly transforming how South African businesses operate, from chatbots managing customer inquiries to automated systems processing financial transactions. While these AI-driven assistants increase efficiency and reduce operational costs, they also present a new, and often underestimated, cybersecurity challenge: identity management.

Read more...
Bombardier expands adoption of Siemens Xcelerator for aircraft developmen
Siemens South Africa IT in Manufacturing
Bombardier has expanded its adoption of the Siemens Xcelerator portfolio of industry software for aircraft development.

Read more...
The DeepSeek effect: navigating AI’s new frontier
IT in Manufacturing
DeepSeek has emerged as a game-changer in artificial intelligence, offering a robust platform redefining how businesses approach AI integration. This change is especially important since it opens up AI to a wider range of organisations, including small and medium-sized enterprises that could have previously been priced out of the market.

Read more...
Automation, is it 2049 already?
Schneider Electric South Africa IT in Manufacturing
It would come as no surprise that AI and ML are at the forefront of the increased efficiency movement, and are vital cogs in this sophisticated automated machine. A development that is extremely exciting, is autonomous systems.

Read more...
Agentic AI: are we building castles on quicksand?
IT in Manufacturing
Artificial Intelligence is in a strange spot. With the explosion of AI tools and applications, we find ourselves teetering between two inseparable yet intertwined paths – the promise of extraordinary capability and the peril of unmitigated risk.

Read more...
There’s a reason the A stands for Advanced in APC
Schneider Electric South Africa IT in Manufacturing
Today’s mineral processing companies face almost universal challenges, efficiently managing resources and high energy consumption, environmental compliance, barriers to technological adoption and the perpetual shortage of skilled labour. While there’s no miracle intervention, there are undoubtedly solutions that improve the above, and one is Advanced Process Control.

Read more...
Digital twins in manufacturing
Schneider Electric South Africa IT in Manufacturing
Digital twin technology can help create better products, fast. It can transform the work of product development too.

Read more...
New generative AI-powered maintenance offering
Siemens South Africa IT in Manufacturing
The Siemens Industrial Copilot is revolutionising industry by enabling customers to leverage generative AI across the entire value chain – from design and planning to engineering, operations and services.

Read more...
Building resilience in extreme environments
ACTOM Electrical Machines IT in Manufacturing
Extreme temperatures, corrosive substances and high pressures are just a few of the elements that make up the unforgiving operational environments characteristic of the petrochemical and oil and gas sectors. A proactive and nuanced approach to industrial maintenance is no longer optional for organisations, it is an absolute necessity to avoid disruptions and create the right conditions for success.

Read more...