Electrical Power & Protection


Siemens at WindEnergy 2014

November 2014 Electrical Power & Protection

At the WindEnergy Hamburg 2014 trade fair, Siemens showed wind turbine manufacturers its comprehensive portfolio of software and hardware products for more cost-effective production and more efficient operation of wind turbines. Siemens focuses on a seamless interplay and end-to-end integration of components and systems, and can offer, for example, an integrated protection concept made up of many individual components to reduce the turbine’s downtimes and increases its availability. For the manufacture of wind turbines, Siemens already offers platform concepts that use software tools to accelerate the design process and reduce the number of system components. Manufacturers can thus lower their production costs, boost the energy yield of their power plants, and optimise operations.

The comprehensive Siemens portfolio covers the entire lifecycle of a wind turbine, including planning, engineering, production and operation. It covers everything from automation, visualisation and control technologies to communications, control circuitry and power distribution for low and medium voltages, as well as pitch and yaw drives plus generator systems for power generation. Various power storage solutions, such as the Siestorage battery storage system, are also part of the portfolio. To stabilise the grid, generated power that cannot flow into the grid can be stored using Siestorage and then fed into the grid when needed. The portfolio also comprises safety technology and fire protection. The offerings are rounded out by comprehensive service concepts that cover the entire lifecycle of a wind turbine. Thanks to the Totally Integrated Automation (TIA) and Totally Integrated Power (TIP) platform concepts, all products and systems work together perfectly, thus increasing system transparency and availability. All components are standardised and communicate seamlessly across all levels, from the individual terminal to the higher-level control room. In this way, every plant section can be seamlessly monitored and optimally controlled.

Customised system control increases efficiency

On the product side, Siemens offers tested and certified standardised components and software tools with TIA. During the manufacturing process, platform concepts provide order, structure, transparency and clarity while reducing the number of system components, spare parts and malfunctions that can occur.

An example of this comprehensive wind turbine management is the Simatic Wind Library. It consists of a complete basic operating system for wind energy system automation based on a software library with over 50 functional modules. About 80 percent of wind turbine functions are stored here in a standard language code. These include pitch and yaw control, nacelle control, tower and system functions as well as status monitoring. The engineering software can be adapted to each individual turbine with no additional cost, greatly accelerating the project planning. All relevant communications-capable components are already integrated in the Simatic Wind Library, which reduces programming and commissioning costs, minimises the risk of errors during commissioning, and lowers the hardware costs.

Another example of cost optimisation is the system controller that can be individually adapted to on-site conditions. The more precisely the controller can address actual wind and operating conditions, the more the entire wind turbine design can be optimised. Siemens has now simplified this process by having the Soft-SPS Simatic WinAC RTX communicate directly and in real time with the MATLAB/Simulink created by MathWorks. MathWorks is one of the world’s leading developers and suppliers of technical software for mathematical calculations and model-based development. Using this software, wind turbine manufacturers can enhance their individual programs to operate with maximum efficiency and thus generate the highest possible energy yield, depending on the respective installation location and wind situation. All simulation results and control settings can now be transferred precisely over to the Simatic system controller.

End-to-end protection

As part of TIP, Siemens is introducing perfectly coordinated protection, switching, measurement, and monitoring devices from the Sentron family for safe and efficient distribution of low-voltage electricity in the wind turbine. One example is the open 3WL circuit breaker, which ensures reliable protection in the main power circuit. It protects generators and converters against short circuits and overloads. A particular highlight for feeding in wind turbine secondary circuits is the new 3 VA moulded case circuit breaker. It reliably protects lines and electrical loads of secondary circuits against electrically caused damage and outages by reliably turning off the power during malfunctions such as short circuits and overloads. With its optimised selectivity characteristics, it ensures that a selective protection response is in place among protection devices and to other ones. The result is increased system availability, since it shuts down only system components that are actually affected by a malfunction.

A reliable connection to the grid

For reliable, efficient feed-in of wind power into the power supply grid, Siemens is exhibiting power distribution and energy automation solutions for wind turbines as well as all the way to the grid connection. Reliable, low-loss power transmission and distribution in the system is made possible by the Sivacon 8PS busbar trunk systems. The gas-insulated switchgear ensures there is a reliable connection to typical grid configurations. Cables transmit the generated electricity to a transformer station, in which another GIS creates the connection to the high-voltage grid. Additional compensation systems are implemented for larger wind power plants, and they, too, operate in the medium-voltage range and are connected to the wind farm grid via a GIS. Energy automation solutions are based on the Sicam product family. A spectrum of solutions that covers everything from monitoring individual wind turbines to equipping offshore transformer platforms meets operators’ needs when it comes to energy automation. These solutions are built on wide-ranging experience gained from an extensive installed base. Intelligent system architecture and the functional integration of energy automation components allow for reliable operations as well as decreased maintenance and upkeep costs. Examples include system monitoring, feed-in management, as well as fault analysis that can be performed in land-based service centres for offshore platforms.

For more information contact Keshin Govender, Siemens Southern Africa, +27 (0)11 652 2412, [email protected], www.siemens.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Solar energy reimagined
Electrical Power & Protection
As the global energy sector races to meet net-zero commitments, utility-scale solar is undergoing a fundamental transformation. No longer defined by megawatt capacity alone, solar projects are now being evaluated on their ability to deliver dispatchable power, enhance grid stability, and provide critical ancillary services.

Read more...
Schneider launches new Breaker Status and Communication Module
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric has launched its new Breaker Status and Communication Module Modbus SL/ULP, which delivers enhanced performance, improved connectivity and simplified integration for power distribution systems.

Read more...
Battery energy storage is critical to stabilise SA’s grid
Electrical Power & Protection
As the global energy transition accelerates, South Africa is quietly becoming a major player in one of the sector’s fastest-growing energy segments: battery energy storage systems.

Read more...
Reliable redundancy with the Mibbo
Conical Technologies Electrical Power & Protection
In industrial automation and control systems, uninterrupted power isn’t a luxury, it’s essential. The Mibbo M3DN Series Redundant Module steps in as the perfect solution when you need reliable 24 V DC power without the risk of single-point failure

Read more...
Siemens democratises AI-driven PCB design for small and medium electronics teams
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software is making its AI-enhanced electronic systems design technology more accessible to small and mid-sized businesses with PADS Pro Essentials software and Xpedition Standard software.

Read more...
Rugged, industrial-Grade DIN rail
Conical Technologies Electrical Power & Protection
The Mibbo MTR960W from Conical Technologies is a high-powered, compact and reliable industrial power supply. It delivers a solid 960 watts of output power at 24 or 48?V DC, and is reliable and cost-effective.

Read more...
Schneider Electric’s microgrid enables optimised energy operations
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric has launched its EcoStruxure Microgrid Flex product.

Read more...
Energy management pays off
Electrical Power & Protection
Onsite energy utilities such as boilers must be independently managed to achieve meaningful performance outcomes.

Read more...
Integration of power and energy management with industrial
Schneider Electric South Africa Electrical Power & Protection
Water and power management form the backbone of society and the country’s industrial landscape. With infrastructure challenges, stricter environmental regulations and the need for greater operational efficiency, water and wastewater operators need to optimise their systems. This is where the integration of power and energy management and industrial automation can alleviate some of these operational challenges.

Read more...
Maintenance and health of battery storage systems
Comtest Electrical Power & Protection
How to maintain batteries.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved