Electrical Power & Protection


Siemens at WindEnergy 2014

November 2014 Electrical Power & Protection

At the WindEnergy Hamburg 2014 trade fair, Siemens showed wind turbine manufacturers its comprehensive portfolio of software and hardware products for more cost-effective production and more efficient operation of wind turbines. Siemens focuses on a seamless interplay and end-to-end integration of components and systems, and can offer, for example, an integrated protection concept made up of many individual components to reduce the turbine’s downtimes and increases its availability. For the manufacture of wind turbines, Siemens already offers platform concepts that use software tools to accelerate the design process and reduce the number of system components. Manufacturers can thus lower their production costs, boost the energy yield of their power plants, and optimise operations.

The comprehensive Siemens portfolio covers the entire lifecycle of a wind turbine, including planning, engineering, production and operation. It covers everything from automation, visualisation and control technologies to communications, control circuitry and power distribution for low and medium voltages, as well as pitch and yaw drives plus generator systems for power generation. Various power storage solutions, such as the Siestorage battery storage system, are also part of the portfolio. To stabilise the grid, generated power that cannot flow into the grid can be stored using Siestorage and then fed into the grid when needed. The portfolio also comprises safety technology and fire protection. The offerings are rounded out by comprehensive service concepts that cover the entire lifecycle of a wind turbine. Thanks to the Totally Integrated Automation (TIA) and Totally Integrated Power (TIP) platform concepts, all products and systems work together perfectly, thus increasing system transparency and availability. All components are standardised and communicate seamlessly across all levels, from the individual terminal to the higher-level control room. In this way, every plant section can be seamlessly monitored and optimally controlled.

Customised system control increases efficiency

On the product side, Siemens offers tested and certified standardised components and software tools with TIA. During the manufacturing process, platform concepts provide order, structure, transparency and clarity while reducing the number of system components, spare parts and malfunctions that can occur.

An example of this comprehensive wind turbine management is the Simatic Wind Library. It consists of a complete basic operating system for wind energy system automation based on a software library with over 50 functional modules. About 80 percent of wind turbine functions are stored here in a standard language code. These include pitch and yaw control, nacelle control, tower and system functions as well as status monitoring. The engineering software can be adapted to each individual turbine with no additional cost, greatly accelerating the project planning. All relevant communications-capable components are already integrated in the Simatic Wind Library, which reduces programming and commissioning costs, minimises the risk of errors during commissioning, and lowers the hardware costs.

Another example of cost optimisation is the system controller that can be individually adapted to on-site conditions. The more precisely the controller can address actual wind and operating conditions, the more the entire wind turbine design can be optimised. Siemens has now simplified this process by having the Soft-SPS Simatic WinAC RTX communicate directly and in real time with the MATLAB/Simulink created by MathWorks. MathWorks is one of the world’s leading developers and suppliers of technical software for mathematical calculations and model-based development. Using this software, wind turbine manufacturers can enhance their individual programs to operate with maximum efficiency and thus generate the highest possible energy yield, depending on the respective installation location and wind situation. All simulation results and control settings can now be transferred precisely over to the Simatic system controller.

End-to-end protection

As part of TIP, Siemens is introducing perfectly coordinated protection, switching, measurement, and monitoring devices from the Sentron family for safe and efficient distribution of low-voltage electricity in the wind turbine. One example is the open 3WL circuit breaker, which ensures reliable protection in the main power circuit. It protects generators and converters against short circuits and overloads. A particular highlight for feeding in wind turbine secondary circuits is the new 3 VA moulded case circuit breaker. It reliably protects lines and electrical loads of secondary circuits against electrically caused damage and outages by reliably turning off the power during malfunctions such as short circuits and overloads. With its optimised selectivity characteristics, it ensures that a selective protection response is in place among protection devices and to other ones. The result is increased system availability, since it shuts down only system components that are actually affected by a malfunction.

A reliable connection to the grid

For reliable, efficient feed-in of wind power into the power supply grid, Siemens is exhibiting power distribution and energy automation solutions for wind turbines as well as all the way to the grid connection. Reliable, low-loss power transmission and distribution in the system is made possible by the Sivacon 8PS busbar trunk systems. The gas-insulated switchgear ensures there is a reliable connection to typical grid configurations. Cables transmit the generated electricity to a transformer station, in which another GIS creates the connection to the high-voltage grid. Additional compensation systems are implemented for larger wind power plants, and they, too, operate in the medium-voltage range and are connected to the wind farm grid via a GIS. Energy automation solutions are based on the Sicam product family. A spectrum of solutions that covers everything from monitoring individual wind turbines to equipping offshore transformer platforms meets operators’ needs when it comes to energy automation. These solutions are built on wide-ranging experience gained from an extensive installed base. Intelligent system architecture and the functional integration of energy automation components allow for reliable operations as well as decreased maintenance and upkeep costs. Examples include system monitoring, feed-in management, as well as fault analysis that can be performed in land-based service centres for offshore platforms.

For more information contact Keshin Govender, Siemens Southern Africa, +27 (0)11 652 2412, [email protected], www.siemens.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Waste To Energy thermal technologies
DirectLogic Automation Electrical Power & Protection
The vast quantities of waste produced around the world are a large and growing problem. Waste to Energy technology based on pyrolysis is a solution.

Read more...
New world of process control: A completely web-based process control system
Siemens South Africa IT in Manufacturing
Control technology is crucial for gaining a competitive edge in the process industry. That’s why there’s SIMATIC PCS neo - the innovative ground-breaking process control system by Siemens.

Read more...
New enhanced Breaker Status and Communication Module
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric has launched its new Breaker Status and Communication Module (BSCM) Modbus SL/ULP, which delivers enhanced performance, improved connectivity and simplified integration for power distribution systems.

Read more...
Building green industries to scale green economies
Electrical Power & Protection
Africa is taking bold steps to build green industries across the continent. Namibia is a trailblazer in the hydrogen space, with up to five Final Investment Decisions scheduled to be made in 2025/2026 and is pioneering a world first for green industrialisation.

Read more...
Easing the path for IPPs navigating South Africa’s energy regulations
Electrical Power & Protection
Independent Power Producers and developers venturing into South Africa’s renewable energy sector face a challenging regulatory landscape. SPS is a renewable energy asset management company that is actively expanding into the energy trading and wheeling market, which will enable businesses to buy and sell energy directly

Read more...
How energy storage will make or break SA’s renewable transition
Electrical Power & Protection
Energy storage is no longer an add-on, but the foundation of a reliable, resilient and renewable energy system. As South Africa accelerates towards a greener future, storage innovation could determine the difference between progress and paralysis.

Read more...
Electromagnetic flow measurement
Siemens South Africa Flow Measurement & Control
The SITRANS FM electromagnetic flowmeters from Siemens deliver high-precision volume measurement of electrically conductive liquid applications – from water, wastewater and irrigation to hygienic processes and even mining slurries with magnetic particles.

Read more...
Condition-based maintenance can revolutionise business continuity
Schneider Electric South Africa Electrical Power & Protection
As businesses experience growing pressure to enhance operational efficiency and reduce downtime due to electrical failure, condition-based maintenance becomes essential for preventing unforeseen equipment breakdowns by assessing the real-time health of electrical systems.

Read more...
Bombardier expands adoption of Siemens Xcelerator for aircraft developmen
Siemens South Africa IT in Manufacturing
Bombardier has expanded its adoption of the Siemens Xcelerator portfolio of industry software for aircraft development.

Read more...
Boiler selection for optimal thermal energy performance
Electrical Power & Protection
The changing world of boilers means companies wishing to improve their thermal energy efficiencies while containing costs and environmental impacts must make careful and informed decisions. AES’s rich pool of experience, ability to keep pace with new steam trends and technologies, and understanding of their clients’ production processes can assist clients to weigh up different options in a careful and informed manner.

Read more...