IT in Manufacturing


Safety, software and statistics

July 2011 IT in Manufacturing

Statistics is an area which can look impressive in mathematical circles. In a nutshell, given sufficient samples and assuming all the factors are considered, past trends can be a reasonable indicator of future events. However, as weather forecasters know all too well, the field of statistics can only result in a probability. It may be predicted that the chances of rain today are 80%. But there is always a chance of 20% that it will not rain. Reliance on probabilities to forecast individual specific events precisely is therefore flawed, because a probability is by definition based on an uncertain set of factors and the probability is only valid given sufficient samples.

In the real world, risk is a reality. Throughout history, humans have tried to mitigate against risks, from avoiding sabre-toothed tigers to depressurising a vessel carefully before drilling into it for maintenance. Those risks that cannot be adequately mitigated need to be avoided or simply accepted (move far away from sabre-toothed tigers or do not ever drill into a pressure vessel).

How is risk usually assessed?

In hazardous industries, risk assessments are a fundamental part of the management of safety. Risk assessments are used to identify those risks serious enough to demand attention. A common approach used in industry to quantify risk is to consider the probability of an incident on a scale of 1 to 5, and at the same time the consequences should the incident occur, also on a scale of 1 to 5. The product of the two numbers is the overall risk figure. The risk can be plotted on a graph or so-called ‘heat map’ where the top right quadrant shows risks with a high probability and a serious consequence and the bottom left quadrant shows low probability and low consequence.

In general, because companies cannot concentrate on all risks, they tend to look at the Top 10 or some other ranking. These Top 10 risks are typically found in the hot zone of the heat map (top right quadrant). This approach is simple, practical and useful, but is however flawed in three main respects:

1. The probability of a risk occurring is based on judgment, is a statistical metric and is therefore imprecise in predicting specific future events.

2. The risks with very low probabilities and very high consequences are sometimes not in the Top 10. (For example a nuclear accident: high consequence, low probability).

3. The risk can change over time for any number of reasons such as plant modifications, operational changes or new factors. The time between the risk assessment and the actual work in hazardous environments can be the difference between an accident taking place or apparent ‘safe work’.

Leading indicators of safety are sometimes used to predict the underlying probability of an incident. Whether or not this is a reliable tool is a whole debate in its own right, but companies often use these because they are practical and useful. For example, the number of accidents per man hour worked, or the number of near misses, are both leading indicators that can predict an increase in the underlying probability of an accident. Furthermore, a near miss usually results in some actions taken to avoid the incident in future, thereby reducing the risk over time. When these indicators increase, further action needs to be taken (so the theory says) to address those factors that are resulting in unsafe conditions. Again this approach can be flawed if it is not realised that leading indicators are also statistically derived and therefore imprecise. Also, management is often totally unaware of what action is actually required to contain rising indicators, especially if the causes are behavioural or cultural in nature.

The right software can help

Software systems that address safety holistically need to embrace several factors. They need to recognise the value of leading indicators and have a good incident and near-miss management capability and enable behavioural safety observations and measurements. They need to recognise the importance of assessing safety related risks at multiple levels – in the engineering and design process (such as HAZOP outputs), as well as in the actual operations (such as permit to work). They need to recognise the dynamic nature of operational environments and have good change management processes to measure the impact of modifications on operational risk. Finally, they need to have the capability to relate patterns and links in the data to warn people of risks that are the combined result of multiple simultaneous factors.

For example, maintenance work on equipment + recent modification to equipment + previous incidents related to equipment + standing work procedure in use = overall risk. This overall risk is something for example that is not evident to people who inspect the work sites, but is the result of advanced system analytics that can correlate data intelligently to derive new insights. Few EHS systems achieve this level of vital insight which is likely to be successfully developed only by those vendors who focus on operational safety systems.

Be wary of inappropriate statistics and oversimplified risk management processes. Be thorough in approach and have multiple strategies to manage safety. Finally seek systems that have an holistic view on safety and at the same time are practical and easy to use. Once the system is in place, look to improve the quality of risk information continuously by adding modules such as incident management, permit to work, engineering change management and advanced analytics that generate new safety-related insights.

For more information contact Gavin Halse, ApplyIT, +27 (0)31 514 7300, [email protected], www.applyit.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Schneider Electric’s Five-Pillar Strategy takes the guesswork out of equip
Schneider Electric South Africa IT in Manufacturing
Schneider Electric’s Field Service Cycle, otherwise known as the Five-Pillar Strategy, is a structured approach to managing the lifecycle of equipment to prolong asset lifespan while reducing the total cost of ownership for customers.

Read more...
Enhancing operational safety and efficiency through advanced risk-based modelling
IT in Manufacturing
Now, more than ever, capital and operational cost can be reduced while enhancing operational safety and increasing production uptime by applying transformative methods such as Computational Fluid Dynamics modelling.

Read more...
Laying the groundwork in IT/OT
IT in Manufacturing
In the realm of manufacturing, the core mandate is to deliver value to stakeholders. For many in the industry, this is best achieved through a risk-averse approach. Only upon establishing a robust foundation should a business consider venturing into advanced optimisation or cutting-edge technological innovations such as industrial AI.

Read more...
Looking into the future of machine vision
Omron Electronics IT in Manufacturing
Artificial intelligence (AI) is driving a significant transformation in all areas of industrial automation, and machine vision is no exception. Omron’s AI-powered machine vision systems seamlessly integrate state-of-the-art algorithms, enabling machines to analyse and interpret visual data meticulously.

Read more...
Driving digital transformation in the truck industry
Siemens South Africa IT in Manufacturing
Tatra Trucks, a leading truck manufacturer in Czechia, has adopted the Siemens Xcelerator portfolio of industry software including Teamcenter software for product lifecycle management and the Mendix low code platform to help increase production volume and strengthen its ability to manufacture vehicles that meet specific customer requirements.

Read more...
Opinion piece: Digital twins in manufacturing – design, optimise and expand
Schneider Electric South Africa IT in Manufacturing
Digital twin technology can help create better products, fast. It can also transform the work of product development. This strong statement from McKinsey reinforces how far digital twins have come in manufacturing.

Read more...
Asset tracking is key to driving operational excellence and sustainable growth
Schneider Electric South Africa IT in Manufacturing
Asset tracking plays a critical role in the success of industrial businesses. By effectively managing and monitoring assets, companies can optimise their operations, ensuring that resources are used efficiently. This leads to improved productivity and reduced costs.

Read more...
Siemens democratises AI-driven PCB design for small and medium electronics teams
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software is making its AI-enhanced electronic systems design technology more accessible to small and mid-sized businesses with PADS Pro Essentials software and Xpedition Standard software.

Read more...
Predicting and preventing cyber-attacks with AI and generative AI
IT in Manufacturing
The speed at which cyber threats are evolving is unprecedented. As a result, companies need to implement state-of-the-art technology to protect their data and systems.

Read more...
Real-world lessons in digital transformation
IT in Manufacturing
Synthesis has helped businesses across multiple industries with their digital transformation by solving their unique integration challenges.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved