Electrical Power & Protection


Airborne wind energy is here

April 2011 Electrical Power & Protection

Airborne wind energy holds the promise of a more effective means of harnessing the power of the wind. AWE unleashes the blade, or wing, of a turbine from its fixed structure and allows it to fly. With flight comes the ability to sweep large areas of the sky to capture significantly more of the wind’s power. Windlift is one of the first companies to pursue this new technology.

The challenge

To provide portable renewable energy to remote villages and other areas where there is no access to the power grid. Remote villages without access to the grid must rely on diesel or petroleum generators for electricity, which means they have power only when they can get fuel.

The solution

To develop a portable 12 kW airborne wind energy system that uses a tethered, flexible airfoil to replace the blades and tower found on traditional wind turbines. Because the system has no tower, it does not require a heavy reinforced concrete foundation, so it can be mounted to a trailer and can provide portable renewable energy in remote off-grid areas.

System operation

The AWE technology uses a flexible airfoil to capture power from the wind. The airfoil is tethered to a base-station and the tethers are spooled onto a large drum. The system, which is mounted to a trailer, operates as a long-stroke reciprocating engine. During the generate phase of the cycle, the airfoil is actively flown in a cross-wind manner downwind of the base station, which maximises the tension in the tethers. As the airfoil moves away from the ground station, the tethers unspool from the drum and drive it to turn a motor/generator. Electrical power from the generator is transmitted to a battery bank that is also mounted to the trailer. When the maximum tether length is reached, the airfoil is ‘depowered’ (ie, oriented into the wind to minimise tether tension) and retracted. The net energy gain per cycle is the energy generated during the outgoing stroke minus the energy consumed during the retract stroke.

We control the system by using an AC motor/generator, two servo motors to steer the airfoil, and two stepper motors to operate the levelwind which stacks the tethers onto the drum. All of these devices interface with an NI CompactRIO embedded system through a CAN bus interface. Additionally, we use two analogue joysticks and a number of digital I/O to interface with the system. Currently, the AWE system is manually operated, but the plan is to automate for future designs.

In addition to the user controls and actuators, the CompactRIO also interfaces with sensors that monitor the horizontal and vertical angle of the airfoil with respect to the base station, the tension in the tethers, the amount of tether remaining on the drum, and the flow of power and charge state of the battery bank. Data from all of these sensors is used to control the cyclic operation and maximise generated power and stability.

From prototype to production with CompactRIO

We chose the CompactRIO platform for this project for several reasons. First, the seamless interface between the CompactRIO and the NI LabVIEW development environment offers a turnkey hardware/software solution with very little learning required.

Second, the wide availability of modules for the CompactRIO means that all of the varied sensors and protocols can be integrated with a single modular system (load cells, temperature sensors, fieldbus, analog, digital, and so on).

Third, the power and flexibility of the combined field-programmable gate array (FPGA) and real-time processor architecture offers functionality that would not be possible with either component alone.

Fourth, and perhaps most importantly, National Instruments illustrated a clear development pathway with the CompactRIO from prototype to production with the same hardware and software.

The FPGA backplane in the CompactRIO system was particularly useful in our development. The ability of the FPGA to run tasks in a parallel manner at high speed (40 MHz clock cycle) enabled us to offload time-critical tasks from the real-time processor. One example of a task that is well-suited to the FPGA is monitoring the proximity sensors that act as an incremental encoder to measure the drum’s rotation. A code segment running on the FPGA counts each sensor pulse at up to 800 pulses per second and communicates the incremental drum position to the realtime controller.

During this development, we used an NI Green Engineering Grant award for a seat of the NI Developer Suite, which included the LabVIEW real-time development environment, NI DIAdem data management and analysis software, LabVIEW FPGA, LabVIEW NI SoftMotion, LabVIEW control design and simulation modules and the LabVIEW PID and fuzzy logic toolkit.

One of the most useful tools for this project outside of the LabVIEW development environment was the DIAdem data analysis software. We used the shared variable engine feature of the CompactRIO to port data over a TCP/IP connection to a remote laptop for datalogging.

The large volume of data generated during the test program was invaluable to the design and development process. Each data file, which represents 10 minutes of operational time, is approximately 4 MB and contains almost 70 individual channels. DIAdem was perfect for processing and analysing this large volume of data. An additional functionality that proved invaluable was the ability to synchronise this with video of the system in operation.

We are currently in the final stages of testing the portable AWE system prototype. The CompactRIO embedded system has been a valuable asset during this development process and we anticipate that it will continue to be an integral part of the system. One important aspect of this approach is that the transition from the current manually operated system to an automated system will be streamlined, and will involve only a software update. This is possible because the manually operated system is fly-by-wire and the CompactRIO has the functionality and performance to replace the user in an automated system.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Critical power distribution for modern infrastructure
Electrical Power & Protection
Legrand has expanded its critical power portfolio with integrated solutions designed for reliable, efficient, safe and flexible power distribution in many applications, including data centres and industrial sites.

Read more...
Emissions pressures are not just hot air
Electrical Power & Protection
Dennis Williams, commercial director of AES says that the South African government aims to push towards global standards in emissions, but it might be difficult for our industries to carry the financial burden. This is where AES fits in.

Read more...
ABB achieves zero operational emissions
ABB South Africa Electrical Power & Protection
ABB’s factory in Oiartzun, Spain, has reached a major sustainability milestone.

Read more...
Energy cannot be destroyed, it can only be transferred
Schneider Electric South Africa Electrical Power & Protection
Industry produces significant amounts of waste. Unfortunately, a lot of this waste is simply disposed of, usually impacting the environment. What if these byproducts could be transformed into a source of energy?

Read more...
Dual head safety pull switches with expanded cable span
Electrical Power & Protection
Referro Systems has added the latest Dual Head range of Allen-Bradley’s safety pull switches to its portfolio. It is ideal for protecting long stretches of equipment where quick access to a safety pull switch and emergency stop is vital.

Read more...
Producing solar hydrogen without platinum
Electrical Power & Protection
A research team led by Chalmers University of Technology, Sweden, has presented a new way to produce hydrogen gas without the scarce and expensive metal platinum.

Read more...
Energy-efficient perimeter cooling system for small, medium and edge applications
Electrical Power & Protection
Vertiv has enhanced the Vertiv CoolPhase Perimeter PAM air-cooled range with new ratings of cooling systems and Vertiv CoolPhase Condenser.

Read more...
High-quality DC/DC brick-type converters
Vepac Electronics Electrical Power & Protection
PowerGood’s high-quality DC/DC brick-type converters are engineered for exceptional reliability, making them the ideal power conversion solution for demanding, high-end applications.

Read more...
SF6-free pure-air medium voltage switchgear
Schneider Electric South Africa Electrical Power & Protection
As South Africa intensifies its move towards cleaner, smarter energy systems, solutions like Schneider Electric’s globally recognised SF6-free GM AirSeT pure-air medium voltage switchgear is taking the country one step closer to achieving its decarbonisation goals.

Read more...
South African businesses can alleviate energy price crisis
Electrical Power & Protection
While grid instability remains a concern, the immediate and most critical driver of South African commercial and industrial investment in renewable energy is the escalating cost of electricity.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved