Fieldbus & Industrial Networking


Shared fast Ethernet: understanding PDVs and collision domains

May 2006 Fieldbus & Industrial Networking

Why are the configuration rules for 100 Mb Ethernet different from 10 Mb?

With Ethernet's carrier sense multiple access with collision detection (CSMA/CD) protocol, LAN devices listen for collisions as they send out packets. If another device transmits before the first device finishes sending, both back off and try again later. For this scheme to work properly, the propagation delay for a packet to travel across the Ethernet segment must be less than the time required to clock the shortest legal packet (64 bytes) onto the LAN. Otherwise, simultaneous senders will not hear each other before they have complete sending.

As the clock speed of the signal increases from 10 Mb to 100 Mb, the time to put a packet onto the LAN decreases. The propagation delay (or packet travel time), however, is determined by the length of the LAN cable... including any repeater delays... and does not change with the data rate. Therefore, the maximum allowable distance between end stations on a LAN decreases as the speed increases.

Limits for 100 Mb Ethernet

At a clock speed of 100 Mb/s, it takes 5,12 microseconds to put the shortest legal packet (64 bytes, or 512 bits including headers, etc) onto the LAN. Therefore, the maximum propagation delay is the same amount of time, 5,12 microseconds or 512 Bit Times. The limit for any shared Ethernet installation is a configuration of cables and repeaters and NICs over which a broadcast packet must travel that does not exceed the maximum propagation delay time. It is convenient to measure the propagation delay in bit times (BT). The Fast Ethernet standard is based on this form of measurement.

A collision domain is a cluster of network devices connected together (without bridging) wherein a broadcast Ethernet packet travels to all of the nodes. To be compliant with Fast Ethernet specifications, a collision domain must be less than 512 BT. That is to say, the signal propagation time for the path between any two nodes must be no more than 512 BT. In any real installation, the most significant collision domain path is the longest path in terms of propagation delay since that is the path that is the limiting factor for that installation.

What 'propagation delay time' means in practical terms

There is a fixed amount of propagation delay time, 512 BT, that can be used up by the network devices in any path between end points of a collision domain. Each network element in a path uses up some amount of the available time budget for that path. When the total time delay for a path reaches the 512 BT maximum, that path becomes a limiting factor on the network topology since nothing more can be added into that path without violating shared Fast Ethernet specifications.

All network elements introduce some delay into the signal's path within a collision domain. Each network interface controller (NIC) introduces a delay from where a packet originates, each metre of cable length introduces a delay due to the distance the packet must travel along its way, and each electronic device such as a repeater introduces a delay due to slowing down the packet as it makes its way through the electronics. The delay values are a major characteristic of each network element, and each network element must be measured and rated in terms of its path delay value (PDV).

PDVs for some typical network elements

NICs are electronic in nature and have PDVs in the same range as other electronic elements. NICs (also called DTEs) that meet the Fast Ethernet specification have a PDV of 50 BT or less. Since there must be two NICs in practically any path through any collision domain... one NIC at each end point... then 100 BT of the total PDV budget of 512 BT is used up by the NICs. This leaves 412 BT for everything else.

Cables introduce delay that is proportional to their length. Fibre cable is fastest, with a PDV of 1,0 BT per metre. A fibre cable segment that connects two fibre NICs, with no repeater in the path, can be a maximum of 412 metres in length.

Category 5 twisted pair cable introduces slightly more delay than fibre cable since the signal is in the form of electricity travelling over copper rather than light waves travelling through glass. Specifically, CAT 5 cable has a PDV of 1,11 BT per metre. This is 11% more than fibre. (CAT 3 cable has a PDV of 1,14 BT per metre, insignificantly more than CAT 5). Of course, twisted pair cable attenuates the signal as it travels along, and it is limited to 100 metres in length per segment accordingly. A repeater will rejuvenate the signal and boost its strength, enabling a packet to travel another 100 metres over another twisted pair cable segment in the collision domain. Each 100 metres of CAT 5 twisted pair cable has a PDV of 111 BT.

There are typically two twisted pair cables of up to 100 metres each in length in a collision domain path, used to connect the two devices at the end points of the collision domain. These two cable segments use up 222 BT of the PDV budget. So, we are down to 190 BT (512 minus 100 minus 222 = 190) left in the path delay budget for the repeaters and the cables interconnecting the repeaters.

PDVs for Fast Ethernet repeaters

Since two Class II repeaters must be useable in a collision domain, and since only 190 BT of the delay budget is available for both of them, it can be seen that the PDV of a Class II repeater is 95 (ie, half of 190) BT. In fact, the Fast Ethernet specification for a Class II repeater is 92 to 95 BT. The specification for a slower repeater that only meets Class I is a PDV of up to 140 BT, and there can practically be only one of them in a 100 Mb/s collision domain. Most Class I and Class II Fast Ethernet repeaters (or hubs, which are the same thing in this case) are designed to meet these specifications, and have very limited installation configurability accordingly.

A better hub design would have a PDV much less than 95 BT. Obviously, a hub with a lower PDV is better because it provides better network configurability. The time delay that is gained from lowering the PDV means that either there can be more total cable length in the longest collision domain path, or there can even be another hub in the path. The configuration limitation of only one (Class I) or two (Class II) hubs is severe, particularly when future growth and expansion of the network must be considered. Hubs with low PDVs that could be configured with three in the PDV budget of 190 BT, ie, with a PDV of about 60 BT, would permit multilevel cascading and vastly improved network installation limitations.

Woodbeam offers fast GarrettCom Magnum Ethernet hubs with PDVs in the range of 60 to 80 BT.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Introduction to Part 2 loop signatures and process transfer functions
Fieldbus & Industrial Networking
The previous series of loop signature articles dealt with the basics of control loop optimisation, and concentrated on troubleshooting and ‘SWAG’ tuning of simple processes. In this new series, consideration will be given to dealing practically with more difficult issues like interactive processes, and with processes with much more complex dynamics.

Read more...
Siemens sets new standards in drive technology
Fieldbus & Industrial Networking
Siemens is setting new standards in industrial drive technology with the launch of its new high-performance drive system, Sinamics S220. This offers a seamless and innovative drive system with comprehensive simulation and analysis capabilities and advanced connectivity features that enable full integration into digital work processes.

Read more...
PC-based control in the plastics industry
Beckhoff Automation Fieldbus & Industrial Networking
Nissei Plastic, an injection moulding machine manufacturer based in Japan is implementing a worldwide tend towards open automation systems from experienced specialists using PC and EtherCAT-based control technology from Beckhoff.

Read more...
Loop Signature 31: Non-linearity in control loops (Part 2)
Michael Brown Control Engineering Fieldbus & Industrial Networking
This article is a continuation of Loop Signature 30 published in the last issue in this series, exploring reasons for non-linearities which may be encountered in feedback control loops

Read more...
PC-based control optimises robotic parts handling on plastics machinery
Beckhoff Automation Editor's Choice Fieldbus & Industrial Networking
NEO is a cartesian robot developed by INAUTOM Robótica in Portugal for parts removal on plastics machinery. Its aim is to increase system productivity. NAUTOM Robótica has entered into a strategic partnership with Bresimar Automação to increase the working speed of the cartesian robots using advanced control and motion solutions from Beckhoff. The result is a comprehensive, future-proof automation solution for its entire family of cartesian robots.

Read more...
PC-based control for flat wire motors for electric vehicles
Beckhoff Automation Fieldbus & Industrial Networking
Special machine manufacturer, ruhlamat Huarui Automation Technologies unveiled the second generation of its mass production line for flexible stators with bar winding. This enables extremely short production cycle and line changeover times, supported by PC- and EtherCAT-based control technology from Beckhoff.

Read more...
Case History 200: The final case history – desuperheater control problem.
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
For this final article I have chosen to relate a problem that existed in a desuperheater temperature control on a boiler in a petrochemical refinery.

Read more...
PC-based control technology in additive manufacturing
Beckhoff Automation Editor's Choice Fieldbus & Industrial Networking
As an open control platform, PC-based control supports different engineering approaches, including low-code programming. The machine builder, Additive Industries uses this to create the code for the TwinCAT runtime of its 3D printers.

Read more...
Suppression and safety solutions for fire and gas in mission-critical industries
Fieldbus & Industrial Networking
By representing world-leading brands and focusing on fully integrated, certified systems, HMA South Africa is positioning itself as a trusted partner in fire detection, suppression and explosion-proof safety solutions across the continent.

Read more...
Integrating fire alarm systems into building management systems
Beckhoff Automation Fieldbus & Industrial Networking
Fire alarm systems work independently of the building automation system. Schrack Seconet has developed a flexible gateway using ultra-compact industrial PCs and TwinCAT from Beckhoff, which can be used to flexibly convert a customer-specific communication protocol to a wide range of transmission standards.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved