Fieldbus & Industrial Networking


Industrial Ethernet moves from theory to reality

January 2004 Fieldbus & Industrial Networking

Knowledge is power. That is why manufacturers worldwide are spending billions of dollars annually on networked industrial control systems. Companies such as IBM, Microsoft, Oracle, and their many partners sell software for everything from enterprise resource planning (ERP) to customer-relationship management (CRM).

On the hardware side, computer controlled (CNC) machine tools, and other production equipment are tailor-made to be linked to enterprise-level networks such as Ethernet.

But where does the knowledge actually reside? Despite advances in manufacturing technology, successful and transparent industrial networking and control from the enterprise level to the device level are about as rare as the paperless office.

The goal of such systems - making money, maintaining good customer relationships, and improving productivity up and down the supply chain - requires more than efficient scheduling and inventory control, although it is vital to pay close attention to both. Forging truly stellar customer relationships involves knowing your process intimately and identifying every opportunity to increase quality, save money, and deliver on time, every time. This requires process knowledge right down to the device level.

Device-level networks

The problem is that most enterprise-wide network solutions take a top-down approach, indiscriminately capturing large amounts of data and revealing little information, such as diagnostics, which would be immediately useful to the shop floor. Part of the problem is that information from field devices - motors, valves, or actuators, for example - must cross several layers before reaching the enterprise network. This information usually encounters a number of control networks with proprietary or open communications protocols acting as barriers along the way.

Fieldbus protocols such as ControlNet, Profibus-DP, DeviceNet, and A-B 1771 RIO bundle data for transmission over the network. These protocols are designed for either the control or device layers of individual industrial networks. While effective, they make it difficult to transparently transfer diagnostic and performance data to the enterprise level for analysis.

Ethernet is the ultimate destination for this information. First developed in 1973 by DEC, Intel, and Xerox, engineers now have a certain comfort level with Ethernet. They know the terminology and how to configure Ethernet networks, and can build relatively low-cost, dependable networks. It has been said that not many electrical engineers come out of college knowing typical fieldbus networks, but most everybody knows Ethernet. And while technically Ethernet can be simply defined as a physical and data-link layer technology, it is one with many benefits and far-reaching possibilities.

Industrial control networks, though, are demonstrably different from most information networks. Extending a network to the plant floor, where diagnostic information resides and decision-making needs to happen, causes concern for a variety of reasons.

First of all, there are not a lot of proven Ethernet-capable industrial devices. Drives, motors, actuators, valves, and other devices that feed digital data directly to information networks like Ethernet represent a significant departure from earlier statistical-process-control systems. Using Ethernet at the device or I/O level in manufacturing is currently in the early-adopter phase. Primary criticisms revolve around whether commercial off-the-shelf Ethernet-capable devices can meet industry-specific requirements of ruggedness, durability, noise immunity, and intrinsically dependable operation. The traditional lack of industrially hardened components and connectors exacerbates this perception. However, suppliers are starting to announce Ethernet-compatible products.

A recent report from ARC Advisory Group, Dedham, Mass, forecasts shipments of Ethernet-capable industrial devices such as drives, motors, actuators and valves will reach nearly 5 million annually by 2005. (For more information, visit www.arcweb.com.)

Widespread penetration at the device level will be a key determinant of whether industrial Ethernet emerges as a common network architecture for manufacturing enterprises. Wide adoption of Ethernet-capable devices is a logical progression along the learning curve to easier integration, improved performance, and lower total costs. After all, the goal of using one common network platform from the enterprise level to the device level throughout a manufacturing operation is certainly worth pursuing.

Ethernet benefits

While we can delve into a discussion of the IEEE 802 standard based on the open systems interconnection (OSI) model that specifies the physical and data-link layers, at the end of the day, Ethernet is a network designed to move large amounts of data very fast, but one with various added benefits. Many in industy understand it conceptually, but many more need to realise where Ethernet is headed and the options it brings to an industrial organisation.

For example, what does it mean to a company to have an embedded Web server on an industrial device? For one thing, it means device manufacturers can embed technical manuals right at the unit, as opposed to having to search and obtain technical information from the Internet or other sources. It also lets users easily access configuration information for that device. Traditional fieldbus networks require separate software packages to configure a valve or actuator. Now this information can reside at the device and is accessible via the Ethernet connection and a standard PC running Web-browser software.

Users can also access diagnostic information for devices with any standard browser. This includes the ability to see inputs, set outputs, and view common errors. Notification capabilities via e-mail are another option. Where it was once possible to determine device status through software polling routines, now that device can be configured to notify appropriate personnel proactively without software polling, essentially making such devices self-monitoring.

Hardware, always assumed to be unchanging, is now becoming transparent to industrial organisations. Ethernet-capable devices let companies develop products and processes around standard protocols, making such processes accessible through existing IT software and infrastructure.

The possibilities are endless. Operating data is delivered to enterprise software directly from the plant floor. Configuration and diagnostic information is stored at the device, accessible through a standard Web browser via a local connection, LAN, or even over the Internet. E-mail capabilities on the device itself offer regularly scheduled notification of performance and scheduled maintenance to internal or external personnel. Efficiency utilisation factors can be tied directly to accounting software.

Many more possibilities exist, including some not yet imagined. Integrating production information in realtime through an industrial organisation is closer to reality than ever before. It has been said that if knowledge is power, then building the right network is the path to power because it lets a company know its process right down to the device level. Numatics believe that the way to get there is Ethernet.

For more information contact Numatics, 031 201 6031, [email protected], www.numatics.com.

The G2-2 fieldbus manifolds from Numatics combine the flexibility of a scalable I/O system with a modular pneumatic valve manifold. An onboard Web server makes the node accessible from any standard browser for configuration, testing, and retrieving technical documentation. The manifold can also send e-mails triggered by specific events, such as diagnostic information or automatic preventive-maintenance scheduling. As a slave on an Ethernet/IP network, the unit controls up to 164 outputs and 96 inputs, and features plug-in valves, sub-bases and I/O modules.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Introduction to Part 2 loop signatures and process transfer functions
Fieldbus & Industrial Networking
The previous series of loop signature articles dealt with the basics of control loop optimisation, and concentrated on troubleshooting and ‘SWAG’ tuning of simple processes. In this new series, consideration will be given to dealing practically with more difficult issues like interactive processes, and with processes with much more complex dynamics.

Read more...
Siemens sets new standards in drive technology
Fieldbus & Industrial Networking
Siemens is setting new standards in industrial drive technology with the launch of its new high-performance drive system, Sinamics S220. This offers a seamless and innovative drive system with comprehensive simulation and analysis capabilities and advanced connectivity features that enable full integration into digital work processes.

Read more...
PC-based control in the plastics industry
Beckhoff Automation Fieldbus & Industrial Networking
Nissei Plastic, an injection moulding machine manufacturer based in Japan is implementing a worldwide tend towards open automation systems from experienced specialists using PC and EtherCAT-based control technology from Beckhoff.

Read more...
Loop Signature 31: Non-linearity in control loops (Part 2)
Michael Brown Control Engineering Fieldbus & Industrial Networking
This article is a continuation of Loop Signature 30 published in the last issue in this series, exploring reasons for non-linearities which may be encountered in feedback control loops

Read more...
PC-based control optimises robotic parts handling on plastics machinery
Beckhoff Automation Editor's Choice Fieldbus & Industrial Networking
NEO is a cartesian robot developed by INAUTOM Robótica in Portugal for parts removal on plastics machinery. Its aim is to increase system productivity. NAUTOM Robótica has entered into a strategic partnership with Bresimar Automação to increase the working speed of the cartesian robots using advanced control and motion solutions from Beckhoff. The result is a comprehensive, future-proof automation solution for its entire family of cartesian robots.

Read more...
PC-based control for flat wire motors for electric vehicles
Beckhoff Automation Fieldbus & Industrial Networking
Special machine manufacturer, ruhlamat Huarui Automation Technologies unveiled the second generation of its mass production line for flexible stators with bar winding. This enables extremely short production cycle and line changeover times, supported by PC- and EtherCAT-based control technology from Beckhoff.

Read more...
Case History 200: The final case history – desuperheater control problem.
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
For this final article I have chosen to relate a problem that existed in a desuperheater temperature control on a boiler in a petrochemical refinery.

Read more...
PC-based control technology in additive manufacturing
Beckhoff Automation Editor's Choice Fieldbus & Industrial Networking
As an open control platform, PC-based control supports different engineering approaches, including low-code programming. The machine builder, Additive Industries uses this to create the code for the TwinCAT runtime of its 3D printers.

Read more...
Suppression and safety solutions for fire and gas in mission-critical industries
Fieldbus & Industrial Networking
By representing world-leading brands and focusing on fully integrated, certified systems, HMA South Africa is positioning itself as a trusted partner in fire detection, suppression and explosion-proof safety solutions across the continent.

Read more...
Integrating fire alarm systems into building management systems
Beckhoff Automation Fieldbus & Industrial Networking
Fire alarm systems work independently of the building automation system. Schrack Seconet has developed a flexible gateway using ultra-compact industrial PCs and TwinCAT from Beckhoff, which can be used to flexibly convert a customer-specific communication protocol to a wide range of transmission standards.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved