IT in Manufacturing


So, what’s left for us humans after the machines take over?

Technews Industry Guide: Industrial Internet of Things & Industry 4.0 IT in Manufacturing

One of the questions that we at the International Data Corporation are asked is what impact technologies like Artificial Intelligence (AI) will have on jobs. Where are there likely to be job opportunities in the future? Which jobs (or job functions) are most ripe for automation? What sectors are likely to be impacted first? The problem with these questions is that they misunderstand the size of the barriers in the way of system-wide automation. The question isn’t only about what is technically feasible; it is just as much a question of what is legally, ethically, financially and politically possible.

That said, there are some guidelines that can be put in place. An obvious career path exists in being ‘on the other side of the code’, as it were – being the one who writes the code, who trains the machine, who cleans the data. But no serious commentator can leave the discussion there, as too many people are simply not able or have no desire to code. Put another way, where do the legal, financial, ethical, political and technical constraints on AI leave the most opportunity?

AI is getting better but there are constraints

Firstly, AI (driven by machine learning techniques) is getting better at accomplishing a whole range of things – from recognising (and even creating) images, to processing and communicating natural language, completing forms and automating processes, fighting parking tickets, being better than the best Dota 2 players in the world, and aiding in diagnosing diseases. Machines are exceptionally good at completing tasks in a repeatable manner, given enough data and/or enough training. Adding more tasks or attempting system-wide automation requires more data and more training. This creates two constraints on the ability of machines to perform work:

1. Machine learning requires large amounts of (quality) data.

2. Training machines requires time and effort (and therefore cost).

Let’s look at each of these in turn – and we’ll discuss how other considerations come into play along the way.

Speaking in the broadest possible terms, machines require large amounts of data to be trained to a level to meet or exceed human performance in a given task. This data enables the bot to learn how best to perform that task. Essentially, the data pool determines the output.

However, there are certain job categories which require knowledge of, and then subversion of, the data set – jobs where producing the same ‘best’ outcome would not be optimal. Particularly, these are jobs that are typically referred to as creative pursuits – design, brand, look and feel. To use a simple example: if pre-Apple, we trained a machine to design a computer, we would not have arrived at the iMac, and the look and feel of iOS would not have become the predominant mobile interface.

This is not to say that machines cannot create things. We’ve recently seen several ML-trained machines on the Internet that produce pictures of people (that don’t exist) – that is undoubtedly creation (of a particularly unnerving variety). The same is true of the AI that can produce music. But those models are trained to produce more of what we recognise as good. Because art is no science, a machine would likely have no better chance of producing a masterpiece than a human. And true innovation, in many instances, requires subverting the data set, not conforming to it.

Secondly, and perhaps more importantly, training AI requires time and money. Some actions are simply too expensive to automate. These tasks are either incredibly specialised, and therefore do not have enough data to support the development of a model, or very broad, which would require so much data that it will render the training of the machine economically unviable. There are also other challenges which may arise. At the IDC, we refer to the Scope of AI-Based Automation. Within this scope:

• A task is the smallest possible unit of work performed on behalf of an activity.

• An activity is a collection of related tasks to be completed to achieve the objective.

• A process is a series of related activities that produce a specific output.

• A system (or an ecosystem) is a set of connected processes.

A practical example of constraints in action

As we move up the stack from task to system, we find different obstacles. Let’s use the medical industry as an example to show how these constraints interact. Medical image interpretation bots – powered by neural networks – exhibit exceptionally high levels of accuracy in interpreting medical images. This is used to inform decisions which are ultimately made by a human – an outcome that is dictated by regulation. Here, even if we removed the regulation, those machines cannot automate the entire process of treating the patient. Activity reminders (such as when a patient should return for a check-up, or reminders to follow a drug schedule) can in part be automated, with ML applications checking patient past adherence patterns, but with ultimate decision-making by a doctor.

Diagnosis and treatment are processes that are ultimately still the purview of humans. Doctors are expected to synthesise information from a variety of sources – from image interpretation machines to the patient’s adherence to the drug schedule – in order to deliver a diagnosis. There are ethical, legal and trust reasons that dictate this outcome.

There is also an economic reason. The investment required to train a bot to synthesise all the required data for proper diagnosis and treatment is considerable. On the other end of the spectrum, when a patient’s circumstance requires a largely new, highly specialised or experimental surgery, a bot will unlikely have the data required to be sufficiently trained to perform the operation and even then, it would certainly require human oversight.

The economic point is a particularly important one. To automate the activity in a mine, for example, would require massive investment into what would conceivably be an army of robots. While this may be technically feasible, the costs of such automation likely outweigh the benefits, with replacement costs of robots running into the billions. As such, these jobs are unlikely to disappear in the medium term.

Conclusion

Thus, based on technical feasibility alone, our medium-term jobs market seems to hold opportunity in the following areas: the hyper-specialised (for whom not enough data exists to automate), the jack-of-all-trades (for whom the data set is too large to economically automate), the true creative (who exists to subvert the data set) and finally, those whose job it is to use the data. However, it is not only technical feasibility that we should consider. Too often, the rhetoric would have you believe that the only thing stopping large scale automation is the sophistication of the models we have at our disposal, when in fact financial, regulatory, ethical, legal and political barriers are of equal, if not greater, importance. Understanding the interplay of each of these for a role in a company is the only way to divine the future of that role.

For more information contact International Data Corporation South Africa, +27 11 517 3240, [email protected], www.idc.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Sustainable energy management
Siemens South Africa IT in Manufacturing
Utilising its innovative ONE approach technology, Siemens provides complete transparency on resource consumption and offers data-driven optimisation recommendations for sustainable energy management.

Read more...
Paving the way for a carbon-neutral future in South Africa
IT in Manufacturing
At ABB Electrification, we believe the infrastructure of the future must do more than support daily operations, it must anticipate them. We are committed to building intelligent systems that connect and optimise infrastructure across sectors.

Read more...
Africa’s hidden AI advantage
IT in Manufacturing
Through my work implementing AI systems across three continents, I’ve become convinced that Africa’s unique context demands urgent AI adoption. Successful implementation requires local expertise to understand resource constraints as design parameters to create the innovations that make technology truly work under real-world conditions.

Read more...
Siemens Xcelerator empowers space-tech pioneer, Skyroot Aerospace
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software has announced that Skyroot Aerospace, a leading private space launch service company in India, has adopted Polarion software from the Siemens Xcelerator portfolio to digitally transform its software development processes and enhance efficiency as it aims to accelerate access to space for its customers worldwide.

Read more...
Water is running out, is your ESG strategy ready?
IT in Manufacturing
Water is one of the most critical yet undervalued resources in modern business. Water stewardship asks businesses to understand their water footprint across the entire value chain and to engage with others who share the same water resources.

Read more...
Cybersecurity in 2025: Six trends to watch
IT in Manufacturing
Rockwell Automation’s?10th?State?of?Smart?Manufacturing report finds that cybersecurity risks are a major, ever-present obstacle, and are now the third-largest impediment to growth in the next 12?months.

Read more...
The state of the smart buildings market in 2025
IT in Manufacturing
Smart buildings are entering a transformative phase, driven by sustainability goals, technological innovation and evolving user expectations. According to ABI Research’s latest whitepaper, the sector is undergoing a strategic overhaul across key areas like retrofitting, energy efficiency, data-driven operations and smart campus development.

Read more...
Digital twin for Bavaria’s National Theatre
Siemens South Africa IT in Manufacturing
Siemens and the Bavarian State Opera are digitalising the acoustics in Bavaria’s National Theatre in Munich, Germany. The result is a digital twin that simulates sound effects, orchestral setups and venue configurations in a realistic 3D acoustic model so that musicians, the director and conductors can assess a concert hall’s acoustics even before the first rehearsal.

Read more...
How AI can help solve South Africa’s water crisis
IT in Manufacturing
Climate change, ageing infrastructure, pollution and unequal access are putting intense pressure on the country’s water systems. A powerful question arises: “Can artificial intelligence help us change course?”

Read more...
Backup has evolved, but has your strategy?
IT in Manufacturing
With cyber threats rising and compliance standards tightening, South African organisations are under growing pressure to revisit their data protection strategies. The era of treating backups as a box-ticking exercise is over.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved