Fieldbus & Industrial Networking


Industrial fieldbus to the IIoT

Technews Industry Guide: Industrial Internet of Things & Industry 4.0 Fieldbus & Industrial Networking

There has been a significant transition towards industrial Ethernet networks over the past few years with large vendors making an aggressive push to swap existing fieldbus infrastructure for Ethernet-based technologies.

The promise of Industry 4.0 and the IIoT is that they can harness this shift, along with the global connectivity platform of the Internet, and recent IP stack extensions such as Time Sensitive Networking (TSN), to enable organisations to establish operational efficiencies and supply chain optimisations not previously achievable.

However, many industry pundits acknowledge that fulfilment of this promise will take time and considerable investment and understanding of the myriad of dynamic interdependencies that make implementation complex. The disparate levels of digital maturity of people and processes further exacerbate the challenge. There is still a need to identify and address the issues that cripple continuous improvement – often there is a simple answer waiting to be unravelled. Yes, the 80/20 rule still applies, so identify the low hanging fruit and take advantage of the same underlying technology improvements that will support Industry 4.0.

Rather than try and get ‘there’ in a single leap of optimism, there are many intermediate steps and knowledge acquisition and preparation that can be undertaken to enable the transition to take place with value being realised each step of the way.

Let’s consider just two of these:

Disparate systems: phased migration, the blending of modern and legacy systems

Vendors, wanting customers to adopt their latest offering, often motivate for a complete upgrade – out with the old and in with the new. While the cost of installing a new industrial Ethernet system does not vary greatly from installing a modern fieldbus network, the cost of replacing a fully functional fieldbus with a newer technology is a significant cost. This comes as both an upfront capital cost (purchase modern technology, system design, installation and commissioning time) and operational cost (extensive initial downtime and production loss, and the need for training). Improved operations over time hopefully mitigate this investment.

Gateway linking Ethernet/IP I/O devices to an existing Profibus PLC.
Gateway linking Ethernet/IP I/O devices to an existing Profibus PLC.

Operators of manufacturing facilities, while desiring improved operations, also need to sweat their existing assets and try to reach their design life of 20 to 50 years, without being drawn into making such major changes that introduce capital cost and impact production availability. The ability to migrate slowly over time, blending modern technology with legacy components should be an attractive compromise. Rather then, as networks reach end of life, and budget is made available, plants could opt to upgrade small portions of the entire network and maintain communication between the different systems with the use of gateways and protocol converters. This allows a more manageable transition with the advantage of keeping operations largely unaffected.

Upgrading I/O: keep the existing control system

Consider the case where the actuators and sensors are the first to be upgraded on a network and the existing PLC/DCS system is to remain running the plant. Without having to migrate or renew the controller’s logic, users can integrate a gateway device to transfer I/O from upgraded sensors and actuators. In this scenario, the gateway acts as an Ethernet/IP scanner and cyclically transfers data from connect I/O to the Profibus PLC.

Gateway linking existing Profibus I/O devices to a Profinet controller.
Gateway linking existing Profibus I/O devices to a Profinet controller.

A second scenario is where the control system can be upgraded to a newer technology while the existing field infrastructure remains intact, especially expensive components like drives and process analysers. For example, Profinet and Profibus, the gateway in this scenario will act as a Profibus master, scan the configured I/O from each of the devices connected and in turn make this available for the ‘new’ Profinet PLC system.

Remote assistance, asset optimisation and permanent monitoring

It is certainly no secret that there is an engineering skills shortage across all industries, and this is especially true with respect to automation systems based on modern communication technologies. It is becoming more and more challenging to have staff at remote facilities all trained and experienced on both legacy and modern technology.

While it remains true that relevant and effective training on these technologies by site staff is still a key operational component, it is now possible to supplement these local skills with insight and expertise from elsewhere. It is possible to establish secure remote access to site information that provides real-time performance metrics for networks, equipment, production output and quality, such that a pool of human expertise, along with machine learning and other artificial intelligent tools can be applied against similar plants geographically dispersed around the world. Proactive and reactive intervention can be triggered almost immediately without the time delay, health/safety risks and costs of travel to these locations.

The use of IIoT edge devices, OPC-UA, MQTT, FDI/FDT and other software tools enables a geographically-displaced community to effectively collaborate and share information and experience and further justify the continuing adoption of tools and methodologies that bring Industry 4.0 closer to realisation.

Industry 4.0 is real and promising but be prepared to grow into it gracefully and pragmatically

Every organisation has its unique pain-points and opportunities for improvements. Here in South Africa, we believe that two useful stepping stones to Industry 4.0 adoption are:

• Keep sweating plant assets and blend legacy automation components with modern industrial Ethernet systems at a pace that makes sense.

• Make use of secure remote access and site monitoring tools to allow rapid response by outside expertise to site issues that affect equipment availability, production efficiency, product quality and personal safety.

For more information contact Industrial Data Xchange, +27 (0)11 548 9960, info@idx.co.za, www.idx.co.za


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Procentec launches new Profibus and Industrial Ethernet diagnostics solution
Technews Industry Guide: Maintenance, Reliability & Asset Optimisation 2019, Industrial Data Xchange (IDX) , Fieldbus & Industrial Networking
Procentec Mercury With the increased complexity of industrial networks comes the need for devices that provide an easy-to-understand overview of the status and health of the infrastructure. The Procentec ...

Read more...
Moxa’s power grid upgrade through easily configurable Modbus gateway
March 2019, RJ Connect , Fieldbus & Industrial Networking
Smart grid is an electrical grid that uses digital communication technology to monitor the status of power consumption and power quality in real time. By using this information, engineers can adjust the ...

Read more...
Process values from IO-Link sensors
March 2019, ifm - South Africa , Fieldbus & Industrial Networking
The E30443 IO-Link master display is easily connected to one port of an ifm IO-Link master with four or eight ports. The display detects sensors that are connected to the same master and automatically ...

Read more...
IO-Link wired exhaust system ­production
January 2019, Turck Banner , Fieldbus & Industrial Networking
Turck demonstrates the flexibility of its BL20 multiprotocol gateway in conjunction with the IO-Link-capable TBIL hubs.

Read more...
Is HART technology still useful as manufacturing moves to Industry 4.0?
December 2018, Pepperl+Fuchs , Fieldbus & Industrial Networking
With its bidirectional communication between intelligent field devices and host systems, HART has become a global standard. The example of valves shows how important the data provided by field devices ...

Read more...
New patch panel for Ethernet networks
November 2018, Phoenix Contact , Fieldbus & Industrial Networking
Time savings of up to 60%.

Read more...
Bus couplers in accordance with Profinet
October 2018, Phoenix Contact , Fieldbus & Industrial Networking
In Profinet applications, the Axioline F bus coupler is the link between the Axioline F system and the higher-level Ethernet system. As Phoenix Contact’s first Profinet bus coupler, the TPS version of ...

Read more...
Prepare for the future
September 2018, Turck Banner , Fieldbus & Industrial Networking
Bring serial interfaces into the era of Industry 4.0.

Read more...
Secure remote access to plants with Profibus
August 2018, Siemens Digital Industries , Fieldbus & Industrial Networking
Siemens has extended its portfolio of industrial routers with the Scalance M804PB, which allows existing machines and plants to be connected to Ethernet networks via Profibus/MPI (multi-point interface). ...

Read more...
Modernising the Cholfirst Tunnel control engineering system
July 2018, Phoenix Contact , Fieldbus & Industrial Networking
The Swiss A4 highway is an important transit route for north-south traffic. Every day, over 25 000 vehicles use the northern section of the A4 that also serves as the Schaffhausen expressway and is a ...

Read more...