IT in Manufacturing


Extending analytics to EAM and operations users

December 2019 IT in Manufacturing

Today’s manufacturing operations and maintenance teams generate vast amounts of data in all forms. As a result, finding the right information, at the right time, and making it accessible to the right people are critical to keeping these functions operating at optimum levels.

Companies trying to understand how to make better use of their data are turning to various types of analytics for answers. These include how best to manage the data, how to determine what data is truly valuable, and when and how to align technology and people to assist with making meaningful conclusions.

Finding nuggets in a mountain of data

With digital transformation initiatives increasing the amount of data created and shared within today’s industrial organisations, making use of all this data can be a challenge. It’s not that this data isn’t relevant, but often some of the more meaningful and actionable nuggets are hidden within a mountain of disparate data, both structured and unstructured.

It is becoming increasingly difficult to make meaningful use of all the data being generated. This is particularly true for end users on the shop floor looking to expand their predictive maintenance and predictive analytics capabilities.

Data that was often managed separately in silos simply cannot be managed that way today. The implication is that maintenance and operations will need to have a much more cohesive vision around shared data and analysis. This is why many industrial organisations seek analytics solutions that can be used by operations and maintenance personnel alike.

Accessing data at the edge

As industrial organisations adopt smart manufacturing methodologies, there is a growing need to acquire, access, and share equipment and sensor data, and then transform all this data into actionable information when and where it is needed.

This data is typically generated at or near the edge layer (close to the point of origin), and processed, stored, and accessed at the database and Big Data layers. Moving forward, data will need to be managed closer to the origin point and then made accessible throughout the organisation.

The emerging democratisation of analytics

With all of this data being streamed and stored in a wide variety of locations and systems, making practical use of it can be a challenge, since mining such disparate data can be difficult. Until recently, most software programs available required specialised expertise and investments in traditional and often costly analytics solutions. These solutions also have all the attendant services costs such as implementation and maintenance. In addition, the skill sets needed to use these solutions have traditionally been left to trained data scientists and statisticians assigned to organisations’ quantitative staffs.

For years, analytics solutions were deemed suitable only for large organisations with dedicated quant staffs. These teams commonly consisted of people with skills that ranged from report writing, business intelligence (BI), and SQL programming expertise, and experts skilled in various forms of predictive and quantitative analysis. Consequently, many industrial organisations have been reluctant to fund analytics projects at the operations and maintenance levels.

More recently, however, new analytics solutions have been introduced to the market that are designed for other users within the business, such as operations and maintenance staffs. These users typically have limited quantitative skills and these newer solutions can provide value for a broader range of users within an industrial enterprise. As industry undergoes a digital transformation, non-data-science users now have more powerful and accurate tools at their disposal. They can now run various operations-specific predictive models and scenarios, and in near-real time if necessary, a capability not generally available until recently.

The time is right for maintenance and operations staffs to make better use of analytic tools to improve industrial asset availability and performance. A change is under way with software, as new, intuitive, and powerful products are being introduced by established and emerging business intelligence, analytics, and data visualisation providers.

In addition to being relatively easy to use (compared to traditional solutions), some of these new solutions enable users to construct models intuitively via visual representations of the data. These solutions are both powerful and intuitive and can allow business users the ability to create queries and some models without the need to write and sequence SQL (structured query language) queries. Other solutions require text-based commands using SQL.

What makes these new solutions accessible to a broader set of users? With these solutions, the rules and sequences for data evaluation are often set by manipulating visual elements (much like setting joins and formulas in some report writer programs), with the underlying SQL code available for those experts who want, or need, to review in greater detail. The result has been a new class of data visualisation analytics products that are powerful, yet intuitive and easy to use.

While sometimes derided by analytics experts as being too much like ‘black box’ solutions (because the underlying code when constructing and evaluating data models is largely hidden), they can nonetheless guide users with pre-configured code for common analyses. While these easier-to-use solutions do not necessarily replace the highly trained and experienced quant personnel, they allow operations and maintenance users to conduct ‘what-if’ modelling and analyses and make better use of analytics experts’ time to validate the underlying methodologies and models.

Many of these solutions also offer open APIs and other options to allow connectivity options to a wide range of data sources. In many cases, SaaS solutions are available, which can offer rapid time to implementation and a lower total cost of ownership compared to on-premise variants that require the purchase of perpetual licenses and associated hardware.

For more information contact Paul Miller, ARC Advisory Group, +1 781 471 1141, pmiller@arcweb.com, www.arcweb.com




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Industrial Ethernet switches reflect ongoing evolution at the IIoT ‘thin edge’
January 2020 , IT in Manufacturing
Today’s digital transformation strategies require data connectivity throughout the architecture to fulfil the quest for improved operations.

Read more...
RS Components introduces 4ZeroBox IIoT development system
January 2020, RS Components SA , IT in Manufacturing
RS Components has introduced the 4ZeroBox IIoT unit from Italian manufacturer TOI. 4ZeroBox is the hardware component of TOI’s 4ZeroPlatform, a plug-and-play data gathering, processing and reporting system ...

Read more...
IFS study reveals AI investments looming on the business horizon
January 2020 , IT in Manufacturing
Global enterprise applications company, IFS, has announced the findings of a research study into the attitudes and strategies towards artificial intelligence (AI) among business leaders. The study polled ...

Read more...
New Mindsphere app from Siemens
January 2020, Siemens Digital Industries , IT in Manufacturing
With Predictive Services for Drive Systems, Siemens presents a standardised extension to local service agreements. Based on the new Mindsphere Predictive Service Assistance app, it makes maintenance more ...

Read more...
Schneider Electric brings digital competence to mining applications
January 2020, Schneider Electric South Africa , IT in Manufacturing
Schneider Electric is dedicated to the deployment of digital technologies in mining to address the rising pressures on business sustainability and reduced energy consumption. “The organisation has invested ...

Read more...
Micromine assists mining operations in the Industry 4.0 era
January 2020 , IT in Manufacturing
Global trends such as Industry 4.0 are transforming the traditional methods deployed to extract ore from rock. Mining operations are instead looking at innovations such as automated drilling in high risk ...

Read more...
11th annual MESA Africa conference
January 2020 , IT in Manufacturing
I recently attended the MESA conference held at the Zulu Inyala Country Manor.

Read more...
Digital twin allows process simulations
December 2019, Siemens Digital Industries , IT in Manufacturing
The high-tech company Grenzebach’s portfolio includes the simulation of material flow in complex plants in the glass industry, which it achieves using Siemens simulation solutions. Together, the two companies ...

Read more...
Game-changing digital solutions for mines
December 2019, SKF South Africa , IT in Manufacturing
With digitalisation creeping into the mining industry and transforming day-to-day operations, this sector is enhancing its Industry 4.0 operation and process compliancy. As a preferred supplier of premium ...

Read more...
Protect critical infrastructure and manufacturing plants
December 2019 , IT in Manufacturing
As manufacturers around the world analyse and embrace the importance of being more connected to the IIoT, cybersecurity experts caution that the benefits of being interconnected come with a warning, and ...

Read more...