Electrical Power & Protection


Protect the fieldbus against voltage spikes

April 2015 Electrical Power & Protection

When it comes to automating processes, fieldbus systems provide a high level of reliability. However, thunderstorms mean that these installations are regularly subjected to the risk of voltage peaks. Lightning protection modules are used to prevent electronics from being damaged when storms occur. A new generation of surge protectors is now available equipped with a self-monitoring function. These surge protectors indicate when they need to be replaced, significantly improving the reliability of the infrastructure.

Surge protector components are put under enormous stress during a lightning strike. Although the modules are specifically designed for these kinds of voltage peaks, they can withstand only a certain number of these events before they ultimately fail. The timing of this failure hinges on two factors: the number of strikes and their intensity. For example, although the lightning protection device would need to be replaced immediately after a single violent pulse of 20 kiloamperes, the functional reserve would only be exhausted after around 1000 minor surges of three kiloamperes. What’s more, wear does not occur on a linear basis, but instead increases disproportionately with age – as does the risk of failure.

Innovative technology for maximum security

With this in mind, Pepperl+Fuchs has developed an innovative lightning protection device equipped with an automatic self-monitoring function that reports when its functional reserve is exhausted. To achieve this function, the FieldConnex surge protector measures the number and intensity of each surge and uses this data to accurately calculate when the available lightning protection has been used up. However, the performance of the lightning protection device can also decline over time in the day-to-day operation of a plant as a result of multiple small power surges. This type of wear may have different technical implications:

• One-sided ground faults that occur due to leakage from the suppressor diode or gas discharge tube connected to the positive or negative side.

• Signal attenuation due to the increased resistance of the suppressor diode or gas discharge tube.

• Increase in no-load current due to leakage from the suppressor diode or gas discharge tube connected to the positive or negative side.

• Attenuation of the signal amplitude as a result of increased series resistance.

• Changes in the signal quality (jitter) based on altered impedance caused by a worn suppressor diode or gas discharge tube.

The effects mentioned above bring about a qualitative change in the physical layer. The FieldConnex diagnostics infrastructure detects this change at an early stage and reports it before faults can occur.

If the lightning protection device is worn out, the FieldConnex surge protector gives a warning that it needs to be replaced. The diagnostics software also sends a message to the control room with details of the affected location. At a click of the mouse, the diagnostics manager creates a report that documents the condition of all connected surge protectors. If the functional reserves of modules have been depleted, the affected modules can be replaced in a timely manner on a targeted basis. By taking this approach, time-consuming and cost-intensive manual checks after thunderstorms are a thing of the past. The FieldConnex surge protector uses the physical layer to report all of this information to the control room. In this way, information is transmitted alongside process communication, without interfering with this communication or making great demands on bandwidth.

High potential for savings in operation

A case study shows how efficient it is to use a FieldConnex surge protector from Pepperl+Fuchs. The study was based on a small process plant with a hundred fieldbus segments, with eight field devices per segment and a total of 1800 lightning protection modules fitted. The number of lightning strikes that a plant such as this is exposed to each year depends on its geographic location. A typical standard value is five to 10 strikes per kilometre per year. The study worked on the basis of up to three strikes – a realistic, albeit conservative, assumption.

Standards stipulate that surge protectors must be checked at least once a year, or after every strike. In the case of the FieldConnex surge protector equipped with self-monitoring function, all that is required to perform these checks is access to the diagnostic manager software to test the devices. The process for calling up the data from the individual modules is simple, taking no longer than five minutes. Any faulty devices that must be replaced can then be identified from the report generated.

Lightning protection modules equipped with a self-monitoring function are admittedly more expensive than those without such a diagnostic function, ie, conventional modules would require a manual test on each of the 1800 devices after every strike. Thus, the higher costs of purchasing lightning protection devices equipped with a diagnostic function are paid off as early as the second year of ownership, where a plant experiences three strikes a year, by removing the need for time-consuming and expensive manual checks.

Simply plug-in – no further engineering required

The innovative surge protectors are quick and easy to both install and replace, with no problems. The lightning protection module can simply be plugged into the device coupler, ie, the segment protector or FieldBarrier. There is no need for an intermediate level of wiring, a fact that saves both time and money. Even the commissioning process is easy, as the advanced diagnostics system detects the modules independently. What’s more, existing plants with older series of device couplers can be retrofitted with surge protectors without further engineering measures.

As with all intelligent FieldConnex diagnostic technology components, the surge protector is compatible with Foundation fieldbus H1 and Profibus PA bus systems. The lightning protection module is available for all common types of explosion protection, such as intrinsic safety and increased safety.

For more information contact Mark Bracco, Pepperl+Fuchs, +27 (0)87 985 0797, [email protected], www.pepperl-fuchs.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Rail electrification and EV solutions for integrated transport systems
Electrical Power & Protection
A comprehensive range of solutions for rail electrification and electric vehicles is available from leading technology provider ABB, contributing significantly to integrated and sustainable transport systems.

Read more...
PPS delivers containerised distribution board for Western Cape hybrid power project
Electrical Power & Protection
South African electrical enclosure specialist Power Process Systems has successfully completed the design, fabrication and commissioning of a 4000 A containerised distribution board for a wind/PV solar hybrid renewable energy project on a site in the Western Cape.

Read more...
The choice of a thermal carrier is critical for optimal processing
Electrical Power & Protection
Historically steam, fuelled by coal, has been the most prevalent thermal carrier in South African industry. However, times are changing, with the manufacturing and processing sector needing to review the energy reticulation systems and thermal carriers currently in use.

Read more...
ABB’s blueprint for a net zero future
Electrical Power & Protection
ABB’s Mission to Zero is a strategic initiative aimed at achieving a sustainable future characterised by zero emissions, zero accidents and zero waste.

Read more...
How South Africa’s transformer manufacturing industry can fill a gaping infrastructure gap
ACTOM Electrical Machines Electrical Power & Protection
South Africa’s energy transition is accelerating the demand for power transformers. However, this shift toward renewable energy is exposing a critical infrastructure gap: a severe shortage of transformers.

Read more...
General-purpose 350 W AC-DC power supply
Electrical Power & Protection
The TDK-Lambda GUS350 series of compact single-output general-purpose power supplies addresses the need for an economically priced product while maintaining reliability and quality.

Read more...
Ground-breaking battery tester
Comtest Electrical Power & Protection
Midtronics offers the proven MVT handheld battery tester. This revolutionary tool, powered by MDX-AI, is set to redefine the standards of battery diagnostics and testing in the automotive industry.

Read more...
Green hydrogen could be the missing link in powering the future of technology
Electrical Power & Protection
Green hydrogen has numerous applications across multiple industries. It also has the potential to provide a clean energy source to power future technology, with far-reaching implications for both industry and society.

Read more...
Energy audits pave the pathway to sustainability and savings
Schneider Electric South Africa Electrical Power & Protection
Energy audits serve as essential tools for businesses looking to reduce costs and meet environmental targets. By analysing energy consumption across systems such as lighting, HVAC, ICT and water infrastructure, audits identify inefficiencies and quantify carbon footprints, enabling data-driven decisions for operational and financial optimisation.

Read more...
Passive fire protection for lithium-ion battery risks
Electrical Power & Protection
In response to the growing threat posed by lithium-ion (Li-ion) battery fires, a breakthrough passive fire protection solution is now available in South Africa.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved