Motion Control & Drives


Control loop: Case History 155 - Control with unstable tuning

July 2017 Motion Control & Drives

I have come across quite a few control loops that were doing a reasonable job of control and which were in fact completely unstable, and in some cases were working much better than if the loop had been tuned with normal robust parameters.

The most common example of unstable control that works well is of course On/Off control, which is used on processes with long lags, like many temperature processes, or on slow integrating processes like levels with very long retention times. An example of a typical temperature controller like this is a thermostat.

I have also often come across plant operators controlling fairly slow integrating processes in manual by opening and closing the valve between two limits to reverse the ramps. This results in the process having a limited cycle but staying within desired boundaries.

Another interesting example of unstable control working well was on a molasses flow loop in a carbon black plant. Molasses is a terrible sticky and viscous fluid to work with, and the plant technicians were having endless problems with the valve sticking. The loop was then tuned to give a small unstable cycle. This kept the valve moving continuously and prevented it from sticking. Quite ingenious!

I recently came across a very interesting example of a flow loop that was only able to work because it had completely unstable tuning. The loop was the reflux flow on a distillation column, and this is an important flow as it is used as the cascade secondary for the column top temperature control. Figure 1 shows the open loop test on the valve.

Figure 1.
Figure 1.

It shows the following major valve problems:

• It is about seven times oversized, which is very bad for control as oversized valves magnify all the control problems by the oversize factor.

• The valve and positioner combination is working very badly. There are huge overshoots and undershoots on step changes, and at times it seems as if the positioner is actually slightly unstable.

• The valve also appears to be quite sticky, and at times it suddenly jumps to a new and often incorrect position where it sticks.

These factors effectively make the valve very non-repeatable, and it would not really be possible to get any reasonable control with normal robust tuning. However, the person who had tuned the loop had done a very clever thing. He had inserted a very high proportional gain, and a relatively slow integral. The high gain made the loop unstable, and resulted in a small amplitude continuous cycle. The integral was fast enough to keep the process near setpoint.

Figure 2 shows a closed loop test with a constant setpoint. The resultant performance is good enough for to allow good control on the column temperature. Obviously this is not the ideal, as one wonders how long the valve will last, but it does work. (Many plants like refineries may not have bypass valves on the control valves, and hate having to shut down a process to work on a valve.)

Figure 2.
Figure 2.

Another example of unstable tuning working quite well was on a gas pressure control loop on a furnace, also in a petro-chemical refinery. Figure 3 shows the loop cycling continuously with unstable tuning, but following setpoint changes reasonably well and quickly.

Figure 3.
Figure 3.

Figure 4 shows the open loop test. There is a problem with the valve/positioner combination. There is quite a bad overshoot on step changes, an indication of negative hysteresis. Other problems are that the valve is probably several times oversized, and that there is non-linear installed linearity, with process gain increasing as the process moves down. Trying to control this valve would really cause difficulties.

Figure 4.
Figure 4.

I think the person who optimised the loop deliberately tuned it to be unstable, so that the valve is continuously forced to operate in a small band around the correct position, and it worked well.

So maybe instability is sometimes not too bad!

Michael Brown is a specialist in control loop optimisation with many years of experience in process control instrumentation. His main activities are consulting, and teaching practical control loop analysis and optimisation. He gives training courses which can be held in clients’ plants, where students can have the added benefit of practising on live loops. His work takes him to plants all over South Africa and also to other countries. He can be contacted at Michael Brown Control Engineering cc, +27 (0)82 440 7790, [email protected], www.controlloop.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Medium voltage drive for enhanced energy efficiency and process optimisation
Schneider Electric South Africa Motion Control & Drives
Schneider Electric South Africa has unveiled its cutting-edge Altivar Process ATV6100 medium voltage (MV) drive range, designed to enhance energy efficiency and operational reliability across various industries.

Read more...
Powerful high-precision hexapod
Motion Control & Drives
With the HEX150-125HL, Aerotech is launching the latest generation of its hexapod technology. The compact six-axis positioner combines precise movements with high load capacity and simple integration.

Read more...
Servicing the electric motor sector
Motion Control & Drives
Hexagon Electrical has expanded its manufacturing and service capabilities to meet the growing demand for customised, high-performance specialised electric motors in heavy engineering, and hazardous industrial and mining applications.

Read more...
Control system for deep antenna
Rockwell Automation Motion Control & Drives
When a major university in South Korea set out to build a 21-metre deep space antenna, the researchers needed a control system that could track celestial objects with pinpoint accuracy, a level of precision they thought was out of reach. By partnering with Rockwell Automation, they discovered that the right technology and support could turn their vision into reality.

Read more...
Manufacturers should go PFAS-Free
igus Motion Control & Drives
igus continues to develop engineered plastics that are free of per- and polyfluoroalkyl substances (PFAS-free) in response to mounting evidence of severe environmental and health hazards caused by the chemicals.

Read more...
Case History 198: Cascade control overcomes valve problems
Michael Brown Control Engineering Fieldbus & Industrial Networking
A large petrochemical refinery asked me to perform an audit on several critical base layer control loops. This article deals with a problem found on a valve controlling the flow of fuel to a heat exchanger.

Read more...
South African paper producer partners with ABB
Motion Control & Drives
Neopak, a leading manufacturer of containerboard and paper products, has renewed its partnership with global technology company, ABB to upgrade the existing automation system at its Rosslyn Paper Mill in Pretoria.

Read more...
ABB supplies electromagnetic stirrer to world’s largest electric arc furnace
Motion Control & Drives
ABB has secured an order from Çolakoglu Metalurji. for an ArcSave electromagnetic stirrer to be installed on one of the world’s largest electric arc furnaces (EAF)

Read more...
Compact, powerful and green mini-picker
Motion Control & Drives
SkyJacks has introduced Jekko’s Mini Picker to the southern African market. This is a compact, highly versatile and environmentally friendly electric mini-picker that is set to redefine lifting capabilities across multiple industries.

Read more...
Redefining industrial lifting
Motion Control & Drives
The Konecranes S-series hoist redefines industrial lifting through its integration of a ground-breaking synthetic rope with smart features, a lifting capacity of 20 tons, and the ability to adapt to diverse girder configurations.

Read more...