Motion Control & Drives


Control loop: Case History 155 - Control with unstable tuning

July 2017 Motion Control & Drives

I have come across quite a few control loops that were doing a reasonable job of control and which were in fact completely unstable, and in some cases were working much better than if the loop had been tuned with normal robust parameters.

The most common example of unstable control that works well is of course On/Off control, which is used on processes with long lags, like many temperature processes, or on slow integrating processes like levels with very long retention times. An example of a typical temperature controller like this is a thermostat.

I have also often come across plant operators controlling fairly slow integrating processes in manual by opening and closing the valve between two limits to reverse the ramps. This results in the process having a limited cycle but staying within desired boundaries.

Another interesting example of unstable control working well was on a molasses flow loop in a carbon black plant. Molasses is a terrible sticky and viscous fluid to work with, and the plant technicians were having endless problems with the valve sticking. The loop was then tuned to give a small unstable cycle. This kept the valve moving continuously and prevented it from sticking. Quite ingenious!

I recently came across a very interesting example of a flow loop that was only able to work because it had completely unstable tuning. The loop was the reflux flow on a distillation column, and this is an important flow as it is used as the cascade secondary for the column top temperature control. Figure 1 shows the open loop test on the valve.

Figure 1.
Figure 1.

It shows the following major valve problems:

• It is about seven times oversized, which is very bad for control as oversized valves magnify all the control problems by the oversize factor.

• The valve and positioner combination is working very badly. There are huge overshoots and undershoots on step changes, and at times it seems as if the positioner is actually slightly unstable.

• The valve also appears to be quite sticky, and at times it suddenly jumps to a new and often incorrect position where it sticks.

These factors effectively make the valve very non-repeatable, and it would not really be possible to get any reasonable control with normal robust tuning. However, the person who had tuned the loop had done a very clever thing. He had inserted a very high proportional gain, and a relatively slow integral. The high gain made the loop unstable, and resulted in a small amplitude continuous cycle. The integral was fast enough to keep the process near setpoint.

Figure 2 shows a closed loop test with a constant setpoint. The resultant performance is good enough for to allow good control on the column temperature. Obviously this is not the ideal, as one wonders how long the valve will last, but it does work. (Many plants like refineries may not have bypass valves on the control valves, and hate having to shut down a process to work on a valve.)

Figure 2.
Figure 2.

Another example of unstable tuning working quite well was on a gas pressure control loop on a furnace, also in a petro-chemical refinery. Figure 3 shows the loop cycling continuously with unstable tuning, but following setpoint changes reasonably well and quickly.

Figure 3.
Figure 3.

Figure 4 shows the open loop test. There is a problem with the valve/positioner combination. There is quite a bad overshoot on step changes, an indication of negative hysteresis. Other problems are that the valve is probably several times oversized, and that there is non-linear installed linearity, with process gain increasing as the process moves down. Trying to control this valve would really cause difficulties.

Figure 4.
Figure 4.

I think the person who optimised the loop deliberately tuned it to be unstable, so that the valve is continuously forced to operate in a small band around the correct position, and it worked well.

So maybe instability is sometimes not too bad!

Michael Brown is a specialist in control loop optimisation with many years of experience in process control instrumentation. His main activities are consulting, and teaching practical control loop analysis and optimisation. He gives training courses which can be held in clients’ plants, where students can have the added benefit of practising on live loops. His work takes him to plants all over South Africa and also to other countries. He can be contacted at Michael Brown Control Engineering cc, +27 (0)82 440 7790, [email protected], www.controlloop.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Novel bearing steel next generation of aeroengines
SKF South Africa Motion Control & Drives
SKF continues to re-imagine intelligent and clean rotation with the development of an innovative temperature-resistant, corrosion-tolerant steel called ARCTIC15 designed for aeroengine bearings.

Read more...
Products from maxon
Motion Control & Drives
A wide range of new products is available from motion control specialist, maxon. with a diverse technology portfolio ranging from highly integrated robotic actuators to powerful servo drives and controllers.

Read more...
Actuators for precise hexapod movements
Motion Control & Drives
Aerotech, manufacturer of high-performance motion control and automation systems, is expanding its Automation1 platform. These compact hexapod devices enable the complete integration of six-axis motion systems into existing control

Read more...
SEW-EURODRIVE service centre transforms future of drive repairs
SEW-EURODRIVE Motion Control & Drives
In a momentous step for the local industrial gearbox and drives market, SEW-EURODRIVE South Africa has formally opened a new service and repair facility alongside its headquarters in Aeroton,

Read more...
Strategic system upgrades beat mining obsolescence and drive productivity
Motion Control & Drives
Mining operations are under constant pressure to maintain output while controlling costs. One persistent challenge continues to confront the industry, knowing when and how to upgrade aging systems before they become a liability.

Read more...
Precision meets performance: The ELGD Axes Family from Festo
Festo South Africa Motion Control & Drives
Festo has introduced the ELGD axes family, engineered for the demands of future-focused industries. With cutting-edge guide technology, exceptional rigidity and high load capacity, these axes deliver more performance within the same installation footprint.

Read more...
Condition monitoring in hazardous areas
SKF South Africa Motion Control & Drives
SKF is further strengthening its condition monitoring offer portfolio by a newly developed hazardous area version of its Microlog Analyzer dBX portable vibration analyser.

Read more...
Rip-and-ship solution speeds up nuclear decommissioning project
Motion Control & Drives
When removing steam generators from decommissioned nuclear reactor buildings, the most economical method is to remove them in one piece. Mammoet was commissioned by Framatome to support with the removal of four steam generators from PreussenElektra’s Nuclear Power Plant Unterweser in Germany.

Read more...
WearCheck turns the focus on friction modifiers
Wearcheck Motion Control & Drives
One of the most important features of a lubricant is the reduction of friction between two surfaces.A dditives like friction modifiers are added to perform this function. Wearcheck turns the focus on friction modifiers

Read more...
SEW-EURODRIVE transforms drivetrain uptime
SEW-EURODRIVE Editor's Choice Motion Control & Drives
The DriveRadar IoT Suite from SEW-Eurodrive is an ideal solution for industrial condition monitoring. This powerful ecosystem of intelligent sensors, edge devices and cloud-based analytics ensures that customers have full visibility and control of their operations.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved