Editor's Choice


AI in manufacturing: a process engineer’s perspective

May 2024 Editor's Choice IT in Manufacturing

The expert will tell you what to do, the philosopher will tell you why to do it, and the engineer will get on and actually do it. As the hype around AI intensifies, the number of ‘experts’ is increasing exponentially. In contrast, the number of engineers who actually know how to implement AI technology remains small.

In past weeks, I have received a proliferation of marketing content about generative AI and how AI is transforming the way we work. Webinars and training courses are oversubscribed as budding talent worldwide recognises that AI skills are not just a passing fad, they will become fundamental to competing in the modern workplace.

With all of this information flooding my inbox, it is perhaps important to step back and ask: “What specific new engineering skills and knowledge are really necessary in order to thrive in the future environment? How should we as engineers react?”

Applied intelligence

As engineers, we are tasked with applying the right technology in a way that will add value to our organisations, and of course to society at large. This has to go beyond generating interesting pictures, getting Elon Musk to perform in the voice of Elvis Presley, and asking ChatGPT to write poetry. We have to go beyond being users of generative AI, and learn what lies under the hood, thereby unlocking the potential of AI to innovate and supercharge our business.

Where is AI innovation most rapid?

Naturally, most of the AI innovation is taking place in the tech sector. Automotive appears to be following in a very close second place.

However, according to a recent Accenture study, the process industry (specifically, chemicals) lags behind in terms of the AI Maturity Index. Accenture defines the AI maturity index as the arithmetic average between foundational and differentiation factors, the two dimensions by which they assess whether a company is an AI innovator, an AI achiever, an AI experimenter, or an AI builder.

Why is it that the chemical industry, that was once at the forefront of automation innovation in the 1970s, has seemingly now lagged and been slow on the uptake regarding AI?

Generative AI infused into business and IT systems

Microsoft recently embarked on a significant marketing campaign to explain the benefits of Copilot, which they describe as AI being ‘infused’ into the business and productivity software that we use every day. Of course, the demos were impressive, and presented by the sharpest minds. Their vision is compelling; ask Copilot to analyse the data in a spreadsheet and then to summarise the important patterns and trends. It is easy to see how generative AI can be used to analyse financial data in the ERP system to help quickly identify loss-making customers, systemic quality issues or product lines that are underperforming.

As an ordinary human, interacting with these AI agents does require a new mindset. In my experience, many people in corporate jobs barely scratch the surface of basic spreadsheet functionality, let alone have enough imagination to ask AI agents to do it for them and correctly interpret the output. This will become a challenge across the enterprise, separating out people who are unable or unwilling to embrace these new technologies in favour of others who do.

Types of AI

In my opinion, the term AI is very broad and doesn’t provide a clear definition of the underlying toolsets. There are many aspects to AI, and generative AI – where the current excitement is centered – is only one variation. Other notable AI technologies include machine learning, decision management, interactive agents and speech/image recognition. As engineers, we have to understand the underlying principles of each of these, and their differences, in order to apply the technologies correctly.

Information process flow

I am a process engineer by training and therefore I imagine a manufacturing plant to consist of a number of process flows that run in parallel. Two important and relevant flows are the material flows and information flow.

Material flows are tangible and have attributes such as composition, mass, temperature and pressure. Information flows, in contrast, are invisible and intangible. They have these attributes:

Timeliness: Information must reach the recipients within the prescribed time frame.

Accuracy: Information is said to be accurate when it represents all the facts pertaining to an issue.

Relevance: The information should be relevant to the situation or decision at hand.

Adequacy: Adequacy means information must be sufficient in quantity.

Completeness: Information is complete when there are no missing parts of the data.

Explicitness: Information should be clear and easy to understand. It should not be ambiguous or open to multiple interpretations.

Exception based: Information should highlight deviations from the standard or expected results.

Infusing AI into manufacturing essentially means infusing AI into the constant streams of information flowing through a factory. The AI technologies mentioned above each need to be applied correctly to the attributes of information flows above.

For example, AI can help summarise a random stream of IoT data so that it becomes explicit and easy to understand. This is where machine learning or generative AI tools like Copilot might, in future, have a significant role to play.

This information flow model of a plant is a conceptual framework that helps understand how AI could be applied in practical terms to a manufacturing operation where real-time data flows in information streams. However, correctly applying the appropriate tool is necessary to solve specific problems. To actually implement these technologies, engineers need to understand the underlying technology fundamentals, just as a process engineer needs to understand how a centrifugal pump works in order to specify the correct pump for an application.

I strongly believe that we are only at the beginning of understanding the practical value of AI and its applications. Those who dismiss AI in manufacturing as mere hype are mistaken this time. There are many use cases. The issue is the scarcity of new skills to bring these ideas to reality.

Fasten your seatbelts, hold onto your hats

According to the same Accenture study mentioned above, the current AI transformation process will likely take less time to disrupt industry than digital transformation. It seems that when we are only just getting to grips with digital transformation, things are about to get interesting again. AI is moving quickly and the stakes are higher than ever. Now is perhaps a good time to seek out training opportunities to better prepare you as an engineer for the next five years.


About Gavin Halse

Gavin Halse.
Gavin Halse.

Gavin Halse is a chemical process engineer who has been involved in the manufacturing sector since mid-1980. He founded a software business in 1999 which grew to develop specialised applications for mining, energy and process manufacturing in several countries. Gavin is most interested in the effective use of IT in industrial environments and now consults part time to manufacturing and software companies around the effective use of IT to achieve business results.

For more information contact Gavin Halse, Absolute Perspectives, +27 83 274 7180, [email protected], https://www.linkedin.com/in/gavinhalse/





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

A South African legacy in telemetry
Editor's Choice Industrial Wireless
Telemetry is becoming a vital component of industrial strategy, allowing companies to harness real-time data to optimise processes and reduce waste. One company leading this technological shift is Interlynx.

Read more...
Case History 199: Another example of the effectiveness of cascade control
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
In my last article I wrote about how cascade control systems can effectively overcome valve problems. This article gives another example of how a temperature control was able to perform well, in spite of really severe valve problems.

Read more...
Upgrading legacy automation
Omron Electronics Editor's Choice Fieldbus & Industrial Networking
Legacy automation is characterised by technology in the later stages of its useful life. As new automation technologies continue to emerge and interconnect at an exponential rate, failing to integrate these technologies can widen the gap between the competitive and the obsolete.

Read more...
Planetary gear units for high torque requirements
SEW-EURODRIVE Editor's Choice Motion Control & Drives
Packing a compact design, along with high torque and low-speed outputs, the new SEW PPK and SEW P2.e planetary gear units from SEW-EURODRIVE offer new capabilities in continuous heavy-duty applications where space is at a premium.

Read more...
These robots crawl into every nook and cranny
DNH Tradeserve t/a DNH Technologies Editor's Choice Motion Control & Drives
Inuktun's small crawler robot magnetically sticks to metal walls and is able to move in all directions. It carries cameras, sensors and tools for inspection or maintenance work in tight pipes and on the outer hulls of tanks or ships. All crawler modules and cameras are equipped with brushed DC motors from Swiss drive specialist, maxon using various motor-gearhead combinations.

Read more...
Swiss watchmaking meets hypercar power
Horne Technologies Editor's Choice
The display of Bugatti’s upcoming luxury model, Tourbillon will be something truly special. Instead of a digital version, the driver will see a genuine Swiss timepiece behind the steering wheel.

Read more...
Reinventing the wheel
Editor's Choice
Once a curiosity in the early automotive age, in-wheel motors are now re-emerging with real promise. From electric cars to commercial vehicles and even aircraft, they are on the verge of transforming transportation engineering.

Read more...
Creating new magnets for electric motors
Editor's Choice
Innomotics, a global specialist in electric motors and large drive systems, is coordinating a consortium for a research project on ‘Integrated Product and Process Innovation for Electric Drives’.

Read more...
Sustainability is transforming fluid power
Editor's Choice Motion Control & Drives
Sustainability is reshaping the future of fluid power. With the growing demand for cleaner, more efficient technologies and tightening global regulations, fluid power systems are being re-engineered for higher efficiency, lower emissions and reduced material usage.

Read more...
The power of water
Editor's Choice Electrical Power & Protection
The Alpenglow Hy4 is the world’s first water-based hydrogen combustion engine, offering a convincing alternative to traditional battery-electric vehicles and established hydrogen fuel cell designs.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved