Editor's Choice


AI in manufacturing: a process engineer’s perspective

May 2024 Editor's Choice IT in Manufacturing

The expert will tell you what to do, the philosopher will tell you why to do it, and the engineer will get on and actually do it. As the hype around AI intensifies, the number of ‘experts’ is increasing exponentially. In contrast, the number of engineers who actually know how to implement AI technology remains small.

In past weeks, I have received a proliferation of marketing content about generative AI and how AI is transforming the way we work. Webinars and training courses are oversubscribed as budding talent worldwide recognises that AI skills are not just a passing fad, they will become fundamental to competing in the modern workplace.

With all of this information flooding my inbox, it is perhaps important to step back and ask: “What specific new engineering skills and knowledge are really necessary in order to thrive in the future environment? How should we as engineers react?”

Applied intelligence

As engineers, we are tasked with applying the right technology in a way that will add value to our organisations, and of course to society at large. This has to go beyond generating interesting pictures, getting Elon Musk to perform in the voice of Elvis Presley, and asking ChatGPT to write poetry. We have to go beyond being users of generative AI, and learn what lies under the hood, thereby unlocking the potential of AI to innovate and supercharge our business.

Where is AI innovation most rapid?

Naturally, most of the AI innovation is taking place in the tech sector. Automotive appears to be following in a very close second place.

However, according to a recent Accenture study, the process industry (specifically, chemicals) lags behind in terms of the AI Maturity Index. Accenture defines the AI maturity index as the arithmetic average between foundational and differentiation factors, the two dimensions by which they assess whether a company is an AI innovator, an AI achiever, an AI experimenter, or an AI builder.

Why is it that the chemical industry, that was once at the forefront of automation innovation in the 1970s, has seemingly now lagged and been slow on the uptake regarding AI?

Generative AI infused into business and IT systems

Microsoft recently embarked on a significant marketing campaign to explain the benefits of Copilot, which they describe as AI being ‘infused’ into the business and productivity software that we use every day. Of course, the demos were impressive, and presented by the sharpest minds. Their vision is compelling; ask Copilot to analyse the data in a spreadsheet and then to summarise the important patterns and trends. It is easy to see how generative AI can be used to analyse financial data in the ERP system to help quickly identify loss-making customers, systemic quality issues or product lines that are underperforming.

As an ordinary human, interacting with these AI agents does require a new mindset. In my experience, many people in corporate jobs barely scratch the surface of basic spreadsheet functionality, let alone have enough imagination to ask AI agents to do it for them and correctly interpret the output. This will become a challenge across the enterprise, separating out people who are unable or unwilling to embrace these new technologies in favour of others who do.

Types of AI

In my opinion, the term AI is very broad and doesn’t provide a clear definition of the underlying toolsets. There are many aspects to AI, and generative AI – where the current excitement is centered – is only one variation. Other notable AI technologies include machine learning, decision management, interactive agents and speech/image recognition. As engineers, we have to understand the underlying principles of each of these, and their differences, in order to apply the technologies correctly.

Information process flow

I am a process engineer by training and therefore I imagine a manufacturing plant to consist of a number of process flows that run in parallel. Two important and relevant flows are the material flows and information flow.

Material flows are tangible and have attributes such as composition, mass, temperature and pressure. Information flows, in contrast, are invisible and intangible. They have these attributes:

Timeliness: Information must reach the recipients within the prescribed time frame.

Accuracy: Information is said to be accurate when it represents all the facts pertaining to an issue.

Relevance: The information should be relevant to the situation or decision at hand.

Adequacy: Adequacy means information must be sufficient in quantity.

Completeness: Information is complete when there are no missing parts of the data.

Explicitness: Information should be clear and easy to understand. It should not be ambiguous or open to multiple interpretations.

Exception based: Information should highlight deviations from the standard or expected results.

Infusing AI into manufacturing essentially means infusing AI into the constant streams of information flowing through a factory. The AI technologies mentioned above each need to be applied correctly to the attributes of information flows above.

For example, AI can help summarise a random stream of IoT data so that it becomes explicit and easy to understand. This is where machine learning or generative AI tools like Copilot might, in future, have a significant role to play.

This information flow model of a plant is a conceptual framework that helps understand how AI could be applied in practical terms to a manufacturing operation where real-time data flows in information streams. However, correctly applying the appropriate tool is necessary to solve specific problems. To actually implement these technologies, engineers need to understand the underlying technology fundamentals, just as a process engineer needs to understand how a centrifugal pump works in order to specify the correct pump for an application.

I strongly believe that we are only at the beginning of understanding the practical value of AI and its applications. Those who dismiss AI in manufacturing as mere hype are mistaken this time. There are many use cases. The issue is the scarcity of new skills to bring these ideas to reality.

Fasten your seatbelts, hold onto your hats

According to the same Accenture study mentioned above, the current AI transformation process will likely take less time to disrupt industry than digital transformation. It seems that when we are only just getting to grips with digital transformation, things are about to get interesting again. AI is moving quickly and the stakes are higher than ever. Now is perhaps a good time to seek out training opportunities to better prepare you as an engineer for the next five years.


About Gavin Halse

Gavin Halse.
Gavin Halse.

Gavin Halse is a chemical process engineer who has been involved in the manufacturing sector since mid-1980. He founded a software business in 1999 which grew to develop specialised applications for mining, energy and process manufacturing in several countries. Gavin is most interested in the effective use of IT in industrial environments and now consults part time to manufacturing and software companies around the effective use of IT to achieve business results.

For more information contact Gavin Halse, Absolute Perspectives, +27 83 274 7180, [email protected], https://www.linkedin.com/in/gavinhalse/





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Cutting-edge robotics and smart manufacturing solutions
Yaskawa Southern Africa Editor's Choice
Yaskawa Southern Africa made a compelling impact at this year’s Africa Automation and Technology Fair.

Read more...
A cure for measurement headaches in contract manufacturing
VEGA Controls SA Editor's Choice
A contract manufacturing organisation provides support to pharmaceutical and biotechnology companies in the manufacturing of medications, formulations and substances. VEGA’s measurement solutions offer accuracy and reliability for monitoring levels and pressures during the manufacturing process.

Read more...
PC-based control for a food capsule and pod packaging machine
Beckhoff Automation Editor's Choice
For TME, a machine builder specialising in the packaging of powdered foods, Beckhoff’s PC-based control technology offers unlimited opportunities when it comes to performance and innovative capacity in terms of flexibility, scalability and openness.

Read more...
Simple and efficient level measurement in the mining, minerals and metals industries
Endress+Hauser South Africa Editor's Choice Level Measurement & Control
Measuring devices in the mining, minerals and metals industries face the challenge of varying material states and long distances in measurement height. Endress+Hauser’s answer to these challenges is the new Micropilot family.

Read more...
PC-based control for fertiliser
Beckhoff Automation Editor's Choice Fieldbus & Industrial Networking
On a farm in the USA, valuable ammonia is extracted from slurry and processed into ammonium sulphate. NSI Byosis has transformed this complex process into a flexible modular system. This modular approach requires an automation solution with flexible scalability in both hardware and software, which this Dutch company has found in PC-based control from Beckhoff.

Read more...
Loop signature 28: Things to consider when tuning.
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
I was giving a course at a remote mine in the middle of the Namibian desert. We were discussing tuning responses, and as I always do on my courses, I mentioned that in my opinion ¼ amplitude damped tuning is not desirable, and is in fact not good.

Read more...
Control without complexity
Editor's Choice Motion Control & Drives
In an era where precision, performance and smart control define industrial success, the right driver can make all the difference. At Axiom Hydraulics, we’ve seen firsthand how the Sun Hydraulics XMD series transforms hydraulic systems, from mining and construction to agriculture and automation.

Read more...
The thermal combustion balancing act
Editor's Choice
From carbon taxes to export tariffs, and cost containment to security of supply and sustainability, companies are under increasing pressure to switch to greener fuel sources. Associated Energy Services warns that this pivotal change has some potentially serious knock-on effects.

Read more...
What’s driving the IE3 motor revolution?
WEG Africa Editor's Choice
The International Efficiency 3 (IE3) motor standard will soon become South Africa’s legal minimum standard, mandating that local suppliers offer more efficient electric motors. What is driving this change, and how does it affect the many industries that rely on these modern electric workhorses?

Read more...
Unlocking the smart factory
ElectroMechanica Editor's Choice Motion Control & Drives
At ElectroMechanica, we recognise that transitioning to smart automation isn’t just about adopting new technology; it’s about solving real challenges. Labour shortages, rising costs and downtime due to outdated machinery make digital transformation essential for long-term competitiveness.

Read more...