IT in Manufacturing


Implementing industrial-grade cybersecurity

November 2023 IT in Manufacturing

Industrial automation platforms have moved beyond delivering basic functionality, and are now being tasked with significant industrial IIoT data aggregation and analytical functions. Every device is becoming smarter and more interconnected than ever before, and the available data is valuable, but must be available where and when it is needed. To realise maximum value, seamless and transparent connectivity is needed from the plant floor to the cloud. The internet and higher-level enterprise computing resources are instrumental in transmitting and processing data.

How we got here

Cybersecurity concerns surrounding industrial automation systems are exacerbated by the intersection of many past decisions. While digital assets have been implemented within industry for over three decades, only recently did cybersecurity become an equal or greater concern than basic functionality. In fact, when the earliest devices were deployed there really weren’t any cybersecurity practices in place. The greatest protection considered at that time was to isolate these devices, creating islands of automation that were relatively difficult to access from a physical perspective, and which lacked widespread accessibility via networking. This was a secure design approach at the time based on available technologies, but is unacceptable for meeting modern business needs.

While newer installations and retrofits have some opportunity to use more secure digital devices, the reality is that many older and insecure assets remain in service for decades without any security updates, and sometimes without any available support. Meanwhile, cyber-threats have accelerated in both quantity and sophistication. With wireless networks and USB devices, physical isolation is simply no longer feasible. Isolation is in direct conflict with the need for comprehensive and legitimate access to all types of industrial digital devices, especially as these devices gain significant intelligence and can supply valuable data.

Recognising the need for cybersecurity is imperative, but simply adding cybersecurity to existing devices is not a complete answer, because it is a bit like adding a locked steel door to a cardboard box to keep unwanted intruders away from the contents. Because many protocols and devices at the very fundamental levels of OT systems were designed without security in mind, and they lack the most basic of cyber-defence mechanisms, no amount of patching can fix them. Cybersecurity provisions must instead be built in to provide the necessary defence-in-depth.

Why some cybersecurity schemes are problematic

Efforts to incorporate cybersecurity have progressively improved over the years. Sometimes suppliers have tried their own tactics, but because the commercial IT arena maintained a significant headstart in the field, most of the best approaches have trickled down from this sector. In fact, custom or proprietary measures can be less secure than those based on open standards, which typically originated in IT.

In some cases, device vendors have implemented cybersecurity using a proprietary chipset associated with their own firmware. Proprietary elements are not open to easy inspection by industry experts, and remain at an ongoing risk of being compromised by malicious persons. Once in-house companies develop cybersecurity firmware, they must commit to curating and updating this firmware continually so that affected products remain secure. This means they must shoulder all the burden of finding vulnerabilities and fixing issues, without the community verifying solutions and providing assistance. Outdated hardware is nearly impossible to remedy without complete device replacement, and running with old firmware also introduces unacceptable vulnerabilities by failing to address the latest types of attacks.

Another more nefarious issue regarding proprietary cybersecurity provisions is that the provider must also establish protective measures when security updates are deployed. Even if the cybersecurity hardware and firmware plan is viable, attackers with sufficient skills can develop ways to create their own modified firmware, which becomes deployed and opens the door for hacking. In some cases, users are unable to trust any future firmware upgrades, but upgrades are needed to provide protection against newer threats. Although it may seem non-intuitive, open standards provide a more secure approach.

Open standards reduce risks

While some industrial suppliers have pursued proprietary hashing algorithms and other methods, a better solution for industry is to follow the proven and massively deployed best practices of the commercial IT sector. This has a far larger installed base of digital devices than the industrial world. OT designs can leverage the best of what the IT world has developed, and also learn from their mistakes.

For example, a few industrial suppliers offer all firmware and software applications via a curated repository, so qualified users have easy access. Each of these software packages is digitally encrypted and signed using industry standard strategies and open standards, including public and private keys. In this way they are utilising proven secure methods to deliver important updates to customers, leveraging the best of what has proved to work.

With open tools placed in the user’s hands, design and support personnel are set up for success. They can always download the latest software, confirm it is digitally verified, and install it on the target device or their computer. It is also possible to confirm that the proper digitally-verified version is on a target device like a PLC/PAC or an edge controller, so users can audit their site, instead of continuing to run on outdated versions for years because they fear updating their system.

Note that there is a difference between encryption and cybersecurity. Encryption in this case involves the delivery method, which serves to ensure the right firmware/software is obtained. Once this is in place, users can install it and benefit from having the latest secure version in operation. Cybersecurity is a much wider topic, with encryption as a subset.

Search out more defence layers

Users should look for industrial platforms that have incorporated other open and standard cybersecurity technologies as they pursue a complete defence-in-depth approach for their projects. For example, some industrial platforms use Trusted Platform Module (TPM), which has a dedicated microcontroller onboard to perform cryptographic and authentication tasks. This can address security at all levels, making things as secure as possible, while still providing the functionality customers need.

Secure Boot can also be incorporated into digital devices. This checks that the boot loader and all associated software images are signed with a cryptographic key authorised by the product vendor. Secure Boot is a security standard developed by the PC industry and used by the Unified Extensible Firmware Interface (UEFI) in conjunction with a device’s BIOS. It prevents devices from being hijacked by malicious actors, or modified to provide covert access.

Developers, and especially OEMs, will want to make sure their industrial automation and computing platforms offer encrypted passwords, and the ability to lock and encrypt applications developed on those platforms. This is partly to protect intellectual property and prevent unauthorised changes in the field; but effective passwords and application locking also serve as additional cybersecurity layers, preventing them from being modified by unauthorised individuals. Similarly, when automation products need to communicate amongst each other or with higher level computing resources, encrypted industrial communication protocols such as OPC-UA Secure are preferred.

Design practices and procedures represent an important aspect of cybersecure systems. Leading automation providers will test their products to ensure they can withstand cybersecurity threats. Designers should comply with widely accepted industry standards such as ISA/IEC 62443, which defines the requirements and processes involved with implementing and maintaining cybersecure industrial automation and control systems. Proactive users will audit their installations to confirm ongoing performance of their installations.

Achieving secure-by-design solutions

Secure connectivity from the plant floor to the cloud is no longer a nicety for industrial automation and data processing systems, it is an imperative. Traditional OT products simply were not built to deliver the level of cybersecurity which must accompany this expanded connectivity. Malicious actors are increasingly targeting OT environments for a wide variety of reasons, and industry must be prepared. Add-on cybersecurity, or worse yet, ineffectively created custom cybersecurity, leaves operational facilities vulnerable to attacks that can cripple production, cost a great deal of money, and even introduce safety and environmental hazards.

Open standards, especially those developed and leveraged from the large base of IT technologies, provide the best answer for the OT industry. Developers need to build their automation solutions based on these types of standards, using industry-leading products with key security features built in. Examples are digitally signed and encrypted firmware/software, secure boot, and encrypted passwords/applications. By following a robust, tiered approach, developers and OEMs can provide the best possible cybersecurity for their automation and IIoT solutions.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Why choose between Capex and Opex if you can Totex?
Schneider Electric South Africa IT in Manufacturing
In a sector marked by cyclical demand, high capital intensity, and increasing regulatory and sustainability pressures, mining, minerals and metals (MMM) companies are re-evaluating how they approach procurement and investment.

Read more...
AI and the smart factory
Schneider Electric South Africa IT in Manufacturing
Imagine walking into a factory where machines can think ahead, predict problems before they happen and automatically make adjustments to realise peak performance. This isn’t science fiction, it’s happening right now as AI continues to transform how we run industrial operations.

Read more...
Why your supply chain should be a competitive advantage
Schneider Electric South Africa IT in Manufacturing
The last five years have placed unprecedented strain on global supply chains. Leading companies are turning the challenge into an opportunity to transform their supply chains into a competitive advantage.

Read more...
Why AI will never truly understand machines
Wearcheck IT in Manufacturing
Cutting-edge technology and solutions powered by AI are embraced by specialist condition monitoring company, WearCheck, where the extreme accuracy of data used to assess and diagnose machine health is paramount.

Read more...
Buildings and microgrids for a greener future
Schneider Electric South Africa IT in Manufacturing
Buildings are no longer passive consumers of power. Structures of almost every size are evolving into dynamic energy ecosystems capable of generating, storing and distributing their own electricity. Forming part of this exciting transformation are microgrids.

Read more...
Traditional data centres are not fit for purpose
IT in Manufacturing
Traditional data centre designs are falling short, with nearly half of IT leaders admitting their current infrastructure does not support energy or carbon-reduction goals. New research commissioned by Lenovo reveals that data centre design must evolve to future-proof businesses.

Read more...
AI agents for digital environment management in SA
IT in Manufacturing
The conversation about artificial intelligence in South Africa has shifted rapidly over the past year. Among the technologies changing the pace of business are AI agents - autonomous, task-driven systems designed to operate with limited human input.

Read more...
AI-powered maintenance in future-ready data centres
Schneider Electric South Africa IT in Manufacturing
The data centre marketplace often still relies on outdated maintenance methods to manage mission-critical equipment. Condition-Based Maintenance (CBM) is powered by AI and is fast becoming a necessity in ensuring both competitiveness and resilience.

Read more...
Powering up data centre mega development
IT in Manufacturing
Parker Hannifin has secured a major contract to supply key equipment for nearly 30 aeroderivative gas turbines powering a new hyperscale data centre in Texas.

Read more...
Building resilient supply chains through smarter e-procurement
RS South Africa IT in Manufacturing
In a time of constant disruption, from supply chain uncertainty to rising operational costs, businesses that embrace digital procurement are better positioned to stay competitive and resilient.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved