Electrical Power & Protection


Zinc batteries for renewable energy storage

Technews Industry Guide: Sustainable Manufacturing 2023 Electrical Power & Protection

Zinc-based batteries are a new energy storage and conversion technology with significant potential for renewable energy applications, according to Simon Norton, executive director of International Zinc Association (IZA) Africa. The technology has attracted attention due to its high theoretical energy density, safety, abundant resources, environmental friendliness and low cost. In recent years considerable effort has gone into improving the performance of zinc-based batteries. Battery cycle life and energy efficiency can be improved by electrolyte modification and the construction of highly efficient rechargeable zinc anodes.

The global risk posed by climate change and the resultant energy crisis due to the excessive use of traditional fossil fuels have spurred the development of renewable energy sources. Therefore, the sustainable development of clean energy globally is critical. Renewable energy sources such as solar, tidal and wind power all have their role to play. However, the intermittent and regional characteristics of renewable energy means that large-scale power generation and long-distance transmission projects are cost prohibitive. Thus, developing highly efficient energy storage and conversion technology is important to achieve effective utilisation and distribution of renewable energy to solve the issue of energy storage.

The researchers point out that lithium-ion batteries (LIBs) dominate the energy storage market at present due to their high capacity. Nevertheless, thermal stability, destruction of electrode structures, flammability of organic electrolytes and the lithium anode, high cost and low specific energy density significantly limit their large-scale commercialisation.

In contrast, aqueous batteries, including zinc/nickel (Zn/Ni), zinc/manganese (Zn/Mn), iron/nickel (Fe/Ni), and iron/cobalt (Fe/Co), have the advantages of low cost, environmental friendliness, and high ionic conductivity. Compared with iron and manganese, the slow hydrogen evolution of zinc in aqueous electrolytes eliminates the risk of fire. More importantly, metal zinc possesses outstanding electrochemical properties, such as a relatively low redox potential, an outstanding specific volumetric capacity, and a high theoretical capacity.

In terms of Zn-ion batteries (ZIBs), safety, high zinc abundance, and a simple assembly process promise large-scale energy storage application. Metal zinc has been used as an anode material since 1799. Zinc-based battery technology accounts for a third of the global battery market. Zinc can be used in Zn-air batteries (ZABs) and Zn-ion and Zn hybrid batteries.

Many companies have already been deploying ZABs for utility-scale energy storage. For example, NantEnergy installed 3000 systems in nine countries in 2019 at $100/kWh. These ZABs with a half-open structure use oxygen directly from ambient air as a cathode reactant, which can exhibit high capacity and energy density. They have a high theoretical specific energy density that is about five times greater than LIBs and are far less expensive. However, the achievable battery lifetime is about 150 cycles under current practical conditions, while the round-trip energy efficiency is usually under 60%, way below commercialisation requirements.

Zinc-based batteries tend to have poor cycle life, low coulombic efficiency (CE), and capacity fading. This is due to uncontrolled growth of zinc dendrites, insulation and discharge products with poor reversibility, and continuous consumption of electrolytes. The operation of ZIBs is based on the stripping and plating of zinc on the anode, zinc ion insertion, extraction and conversion reactions at the cathode, and zinc ion transfer between the cathode and anode. However, ZABs only involve stripping and plating of Zn on the anode in aqueous electrolytes. During charging, zinc ions are redeposited on the zinc anode without the added complication of replacing battery components. Generally, the poor reversibility of the zinc anode and thermodynamic instability are the main obstacles to the commercialisation of zinc-based batteries.

Widely reported research has focused on zinc anode modification, cathode material design, and electrolyte development and improvement. Here the zinc anode has shown compatibility with both aqueous and non-aqueous electrolytes. Aqueous electrolytes have excellent ionic conductivity, non-flammability, easy battery assembly, and non-toxic properties. However, the thermodynamic instability of the zinc anode causes severe challenges, including shape change, passivation, zinc dendrites, and hydrogen evolution reaction (HER). Similar to the Li anode, side reactions consume the zinc anode and electrolyte, resulting in low CE. For organic electrolytes, non-flammable electrolytes are often employed to reduce flammability, while corrosion is minimised thanks to their thermodynamic stability.

“Over the past decade, significant progress and exciting breakthroughs have been achieved in designing anode structures, applying additives, and exploring alternative electrolytes to further commercialise zinc-based batteries,” say the researchers. “Overall, zinc plays a vital role in renewable energy. It stands to enable the development of low cost, green energy storage technologies, in addition to its contribution in the area of solar panels and wind turbines,” concludes Norton.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Waste To Energy thermal technologies
DirectLogic Automation Electrical Power & Protection
The vast quantities of waste produced around the world are a large and growing problem. Waste to Energy technology based on pyrolysis is a solution.

Read more...
New enhanced Breaker Status and Communication Module
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric has launched its new Breaker Status and Communication Module (BSCM) Modbus SL/ULP, which delivers enhanced performance, improved connectivity and simplified integration for power distribution systems.

Read more...
Building green industries to scale green economies
Electrical Power & Protection
Africa is taking bold steps to build green industries across the continent. Namibia is a trailblazer in the hydrogen space, with up to five Final Investment Decisions scheduled to be made in 2025/2026 and is pioneering a world first for green industrialisation.

Read more...
Easing the path for IPPs navigating South Africa’s energy regulations
Electrical Power & Protection
Independent Power Producers and developers venturing into South Africa’s renewable energy sector face a challenging regulatory landscape. SPS is a renewable energy asset management company that is actively expanding into the energy trading and wheeling market, which will enable businesses to buy and sell energy directly

Read more...
How energy storage will make or break SA’s renewable transition
Electrical Power & Protection
Energy storage is no longer an add-on, but the foundation of a reliable, resilient and renewable energy system. As South Africa accelerates towards a greener future, storage innovation could determine the difference between progress and paralysis.

Read more...
Condition-based maintenance can revolutionise business continuity
Schneider Electric South Africa Electrical Power & Protection
As businesses experience growing pressure to enhance operational efficiency and reduce downtime due to electrical failure, condition-based maintenance becomes essential for preventing unforeseen equipment breakdowns by assessing the real-time health of electrical systems.

Read more...
Boiler selection for optimal thermal energy performance
Electrical Power & Protection
The changing world of boilers means companies wishing to improve their thermal energy efficiencies while containing costs and environmental impacts must make careful and informed decisions. AES’s rich pool of experience, ability to keep pace with new steam trends and technologies, and understanding of their clients’ production processes can assist clients to weigh up different options in a careful and informed manner.

Read more...
Securing Africa’s energy future starts at home
ACTOM Electrical Machines Electrical Power & Protection
Africa’s energy demands are surging, but the current reliance on imported solar technology leaves the continent vulnerable. This is why the prospect of building inverters and lithium batteries locally, designed for South Africa’s specific needs, is so promising.

Read more...
Dry-type transformers for Dutch intake substation
Electrical Power & Protection
A data centre in the Netherlands is the site of a recent innovation on the transformer landscape, where TMC Transformers has designed, manufactured and installed dry-type transformers in a large intake substation.

Read more...
Generators: The muscle in the new energy mix
WEG Africa Electrical Power & Protection
Contrary to their reputation as noisy and dirty, generators are a key part of modern energy supplies. Generators are reliable electricity workhorses in times of need. But they are also becoming welcome additions to modern energy mixes through efficiency improvements, noise reduction and flexible design choices.

Read more...