Electrical Power & Protection


Failsafe networking of photovoltaic systems

Technews Industry Guide: Sustainable Manufacturing 2022 Electrical Power & Protection

Photovoltaic systems have to play their part in ensuring high-level grid stability and supply reliability. Here, Ethernet-based networking ensures the failsafe transmission of diagnostics data and control commands between the various installed inverters, transformer stations, grid connection points and monitoring systems – whether via cable-based or wireless communication.

As a renewable energy, photovoltaics (PV) is making a considerable, sustainable contribution to meeting the globally increasing demand for energy. Planning, constructing and managing large PV systems, however, demands a huge amount of expertise and experience.

Zebotec, based in Konstanz, Germany, has established itself in this field over the last 15 years to become one of the world’s leading independent system integrators for controlling photovoltaic power stations. Zebotec is a part of the BayWa r.e. Group, which brought together various companies from within the field of renewable energies in 2009.

The Munich company’s field of activities includes the design, construction and marketing of PV power stations within the solar project management sector, among other things. Within these projects, Zebotec’s responsibilities include the systems for monitoring and control technology, among others. The range of services also includes the construction of efficient Ethernet networks that are used for networking system sections and for data exchange.

VLANs prevent unwanted communication

The Ethernet networks installed in the photovoltaic systems are used to transmit the diagnostics data recorded in the inverters, the weather stations, the temperature sensors mounted in the transformer stations, and the energy measuring devices. Forwarding the control data for grid feed-in, in particular, places high demands on the failsafe performance of this communication, because if the receiver does not receive the control values reliably, this may lead to the system feeding into the power grid without control, which would in turn put the grid’s stability at risk.

Certain special considerations have to be taken into account when networking the individual transformer stations in particular. A good example of this is the 45 MW ground-mounted system in Oosterwolde de Boer, the Netherlands, realised by Zebotec and the Dutch subsidiary of BayWa r.e., GroenLeven.

Firstly, there are large distances to be bridged between the stations in this system, and secondly, the Ethernet cables have been laid in cable ducts with very little clearance to the AC and DC cables in the system. Due to this proximity, electromagnetic interference (EMI) may arise when using classic twisted-pair copper cables and, in the worst case, can result in loss of data.

To prevent this, the copper cables would have to be equipped with special shielding or laid separately. Due to both the length of the cables and the possibility of EMI influences, Zebotec therefore decided to use fibreglass cables that, because of their immunity against EMI, proved to be an installation-friendly and error-tolerant solution.

Zebotec also installed managed switches from Phoenix Contact at the central grid connection point to further increase the stability of the network. The Ethernet transmission of the transformer stations connected in several lines comes together there. In this topology, each line is configured as a separate virtual network (VLAN). This prevents the various system sections from being able to inadvertently exchange data between each other. In turn, this prevents unnecessary data streams and improves communication efficiency.

Zebotec also sets up redundant network structures, especially in large systems, and usually in the form of a ring topology via RSTP (rapid spanning tree protocol) to achieve an even higher level of failsafe performance. This concept means that data transmission between all system sections is ensured, even in the event of a connection failure in one fibreglass line. Zebotec also uses Phoenix Contact’s FL Switchn 2200 Series managed switches here to ensure the necessary redundancy functionality.

Floating transformer stations connected via WLAN

Zebotec is also confronted with another characteristic that brings with it further requirements on the networking due to a new type of PV system. Alongside large free-standing systems, the company has recently started working together with BayWa r.e. on photovoltaic power stations on bodies of water that are not intended for tourism or ecological management purposes.

Transforming unused lakes into highly efficient photovoltaic systems brings with it considerable advantages. For example, they contribute to reducing CO2 emissions, generate high yields due to the water cooling effect, and prevent conflicts in terms of the previous necessity of taking up land. One example is the floating 27 MW system anchored to the lake bed of the Bomhofsplas gravel quarry close to the city of Zwolle in The Netherlands.

Because of the positioning on the lake, cabling the transformer stations and grid connection point would have been complex and expensive. Zebotec therefore decided upon wireless Ethernet networking: The WLAN clients installed in each transformer station establish connections with WLAN access points mounted in stations close to the shore. The transformer stations, which are themselves far from the shore, are coupled via repeaters to an access point to ensure consistent communication.

Here, the high-level reliability and robustness of the WLAN components used were a key factor. Zebotec therefore decided in favour of using the FL WLAN 5110 devices from Phoenix Contact. These industrial-grade devices can be configured as WLAN clients, as repeaters or as access points. This provided Zebotec, as the system integrator, with the flexibility to first construct the control cabinets for all transformer stations to be identical, and then to configure the final WLAN network topology once installed in the respective system.

Two omnidirectional antennas are installed on each transformer station for exchanging data between the FL WLAN 5110 devices. Due to the greater distances involved, Zebotec used directional wireless antennas for connecting the access points to an FL WLAN 5110 installed at the central grid connection point on land. All of the antenna cables are protected with surge protection equipment from Phoenix Contact to protect the photovoltaic system.

Networking concept to be adopted in future projects

To date, the Konstanz-based system integrator has had excellent experiences with both the managed and unmanaged switches, and the WLAN components from Phoenix Contact. “This was one of the reasons why we decided in favour of the infrastructure components, because the devices are industrial-grade and therefore robust enough to satisfy our high demands on high-level availability,” explains Werner Neff, CEO of Zebotec. Therefore, the company will also install the networking concepts described in future photovoltaic power stations.

As an aside, this also applies to the field of control technology. Zebotec has used AXC 3050 and ILC 191 Series controllers, as well as bus couplers, from Phoenix Contact’s Inline product family for processing the diagnostics and control data within its PV systems for years. As a Phoenix Contact solution partner in the field of renewable energies, Zebotec is also one of the first companies in the world to use the new, open PLCnext Technology control platform.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Rail electrification and EV solutions for integrated transport systems
Electrical Power & Protection
A comprehensive range of solutions for rail electrification and electric vehicles is available from leading technology provider ABB, contributing significantly to integrated and sustainable transport systems.

Read more...
PPS delivers containerised distribution board for Western Cape hybrid power project
Electrical Power & Protection
South African electrical enclosure specialist Power Process Systems has successfully completed the design, fabrication and commissioning of a 4000 A containerised distribution board for a wind/PV solar hybrid renewable energy project on a site in the Western Cape.

Read more...
The choice of a thermal carrier is critical for optimal processing
Electrical Power & Protection
Historically steam, fuelled by coal, has been the most prevalent thermal carrier in South African industry. However, times are changing, with the manufacturing and processing sector needing to review the energy reticulation systems and thermal carriers currently in use.

Read more...
ABB’s blueprint for a net zero future
Electrical Power & Protection
ABB’s Mission to Zero is a strategic initiative aimed at achieving a sustainable future characterised by zero emissions, zero accidents and zero waste.

Read more...
How South Africa’s transformer manufacturing industry can fill a gaping infrastructure gap
ACTOM Electrical Machines Electrical Power & Protection
South Africa’s energy transition is accelerating the demand for power transformers. However, this shift toward renewable energy is exposing a critical infrastructure gap: a severe shortage of transformers.

Read more...
General-purpose 350 W AC-DC power supply
Electrical Power & Protection
The TDK-Lambda GUS350 series of compact single-output general-purpose power supplies addresses the need for an economically priced product while maintaining reliability and quality.

Read more...
Ground-breaking battery tester
Comtest Electrical Power & Protection
Midtronics offers the proven MVT handheld battery tester. This revolutionary tool, powered by MDX-AI, is set to redefine the standards of battery diagnostics and testing in the automotive industry.

Read more...
Green hydrogen could be the missing link in powering the future of technology
Electrical Power & Protection
Green hydrogen has numerous applications across multiple industries. It also has the potential to provide a clean energy source to power future technology, with far-reaching implications for both industry and society.

Read more...
Energy audits pave the pathway to sustainability and savings
Schneider Electric South Africa Electrical Power & Protection
Energy audits serve as essential tools for businesses looking to reduce costs and meet environmental targets. By analysing energy consumption across systems such as lighting, HVAC, ICT and water infrastructure, audits identify inefficiencies and quantify carbon footprints, enabling data-driven decisions for operational and financial optimisation.

Read more...
Passive fire protection for lithium-ion battery risks
Electrical Power & Protection
In response to the growing threat posed by lithium-ion (Li-ion) battery fires, a breakthrough passive fire protection solution is now available in South Africa.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved