Editor's Choice


Industrial control system cybersecurity - Part 5: ICS network segmentation.

October 2018 Editor's Choice IT in Manufacturing

In the last three articles on cybersecurity in ICS environments, we have covered risk assessments, asset discovery and vulnerability management, environment hardening and security monitoring. In the penultimate article, we will cover network segmentation in ICS networks.

Historically, many ICS/engineering departments were not focused on protecting the inside of their networks, only the perimeter was protected with the firewall being seen as the single line of defence against the malicious insiders, third-party vendors and the bad guys from the outside. This strategy, while effective for its day, does not hold true in the modern digital world. Today’s attacks are being facilitated by large and well-funded groups of cyber criminals looking to steal intellectual information, stop production and extort companies. Once access is gained by breaching the perimeter, these cyber criminals are able to move freely within your network. This is why it is strongly recommended to implement a network segmentation framework.

Splitting up the network

ICS network segmentation is the process of splitting up your network into different segments or sub-networks, to improve performance, but more importantly, to make it more difficult for an adversary to freely move around if they compromise a part of your network. To define this further, it is the process of grouping similar assets and then enforcing a segment between the levels both above and below.

To put this into perspective, Target Corporation, a leading USA retailer, lost 40 million credit and debit card numbers in December 2013. The first part of this compromise is that the cyber criminals stole credential information from a third party HVAC supplier. The second part is that these credentials were then used to gain access to the Target Corporation network. The third part is that once the cyber criminals gained access they targeted the POS systems, by installing malware on them. There is more to this incident (an entire article on its own), but it does highlight the need for strong effective network segmentation. If there was proper network segmentation between the POS network, the third party network and the main corporate network, it would have been much more difficult to steal the information.

Purdue Enterprise Reference Architecture

One of the most commonly used models is that of the Purdue Enterprise Reference Architecture model, more commonly known as PERA or just the Purdue model. I strongly urge all of those responsible for ICS cybersecurity to review this method. It was developed by the Industry-Purdue University Consortium for Computer Integrated Manufacturing, and has been widely adopted by major industrial control system cybersecurity frameworks such as NIST 800-82 and ISA/IEC 62443.

From a hierarchical view the model is comprised of 6 levels and 5 zones. The 6 levels are:

• Level 0: Process.

• Level 1: Basic control.

• Level 3: Operations and control.

• Level 4: Business planning and logistics.

• Level 5: Enterprise network.

And the five zones being:

• Enterprise zone.

• Demilitarised zone (DMZ).

• Manufacturing zone.

• Cell/area zone.

• Safety zone/Safety Instrumented System (SIS).

The diagram is a very basic control network depicting how the Purdue model should logically be implemented.

One aspect to take note of from the diagram is that no control system protocol should traverse the ICS network into the enterprise or business network. All too often we still find ICS traffic on the IT network(s), which not only slows down network performance by having unnecessary traffic ‘on the wire’, but also provides huge security risks as these protocols have no, or very limited, built-in security. If ICS traffic is absolutely required to traverse the ICS network through to the IT network, ensure that is it is strictly controlled.

Each ICS system is different and requires certain tweaks and changes to the customer’s specific ICS network segmentation framework. Where the Purdue model helps is that it assists in designing a base framework which you can then build on. As I’ve stated previously, there is no ‘one size fits all’ framework that is right for everyone, and there are other models that you might want to consider to suite your organisation’s needs. The Industrial Internet of Things (IIoT) and Software-Defined Networking (SDN) is also changing the way we see and segment our networks.

Tommy Thompson

Tommy Thompson is a passionate cybersecurity professional with some 15 years’ experience. Starting as a firewall engineer in 2001, Thompson has assisted a variety of companies in numerous roles with their cybersecurity problems. He holds a BComm degree in Information Management from Oxford Brookes University (UK) and he is certified by PECB (Canada), as a Scada Security Professional (CSSP).

For further information contact Tommy Thompson, +27 (0)11 463 0096, tommy@nclose.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Machine health monitoring with ifm
ifm - South Africa Editor's Choice IT in Manufacturing
With ifm’s machine health monitoring, early signs of wear can be detected and unexpected failures prevented. Combined with equipment preventive maintenance software, interventions can be scheduled proactively to avoid costly downtime.

Read more...
Powering Africa’s sustainable mining
VEGA Controls SA Editor's Choice Level Measurement & Control
At the 2026 Mining Indaba in Cape Town, one theme rises above all others, progress through precision. For VEGA, a global leader in process instrumentation, this mission aligns perfectly with its core purpose, which is turning measurement into meaningful progress.

Read more...
PCS Global delivers turnkey MCC installation in Botswana
PCS Global Editor's Choice PLCs, DCSs & Controllers
PCS Global is delivering a turnkey containerised MCC installation for a major copper mining operation in Northwest Botswana.

Read more...
SEW-EURODRIVE transforms drivetrain uptime
SEW-EURODRIVE Editor's Choice Motion Control & Drives
The DriveRadar IoT Suite from SEW-Eurodrive is an ideal solution for industrial condition monitoring. This powerful ecosystem of intelligent sensors, edge devices and cloud-based analytics ensures that customers have full visibility and control of their operations.

Read more...
PC-based control for flat wire motors for electric vehicles
Beckhoff Automation Editor's Choice Motion Control & Drives
Special machine manufacturer, ruhlamat Huarui Automation Technologies has unveiled the second generation of its mass production line for flexible stators with bar winding (pins). This enables an extremely short production cycle and line changeover times, supported by PC- and EtherCAT-based control technology from Beckhoff.

Read more...
Heavy impact, smart control
Axiom Hydraulics Editor's Choice Pneumatics & Hydraulics
Every now and then a project lands on your desk that’s equal parts heavy machinery and fine control - a tantalising mix for any engineer. A client approached Axiom Hydraulics with a project exactly like this.

Read more...
Pneumatics makes a technological leap with the proportional valve terminal
Festo South Africa Editor's Choice Motion Control & Drives
Festo continually makes bold technological leaps to keep pace with global advancements. Controlled Pneumatics is redefining the boundaries of compressed air technology to meet the demands of today’s most advanced applications.

Read more...
Driving fluid power forward
Editor's Choice News
The National Fluid Power Association is developing its latest Industrial Technology Roadmap for 2025, showing how hydraulics and pneumatics are changing to meet new industrial demands.

Read more...
World’s hottest engine
Editor's Choice Motion Control & Drives
Scientists have built the world’s smallest engine. It’s also the world’s hottest. It could provide an unparalleled understanding of the laws of thermodynamics on a small scale, and provide the foundation for a new, efficient way to compute how proteins fold.

Read more...
PC-based control optimises robotic parts handling on plastics machinery
Beckhoff Automation Editor's Choice Fieldbus & Industrial Networking
NEO is a cartesian robot developed by INAUTOM Robótica in Portugal for parts removal on plastics machinery. Its aim is to increase system productivity. NAUTOM Robótica has entered into a strategic partnership with Bresimar Automação to increase the working speed of the cartesian robots using advanced control and motion solutions from Beckhoff. The result is a comprehensive, future-proof automation solution for its entire family of cartesian robots.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved