Analytical Instrumentation & Environmental Monitoring


Electromagnetic radiation and human safety

November 2003 Analytical Instrumentation & Environmental Monitoring

Non-ionising radiation covers the electromagnetic spectrum from DC to 300 GHz (and light to above ultra-violet, after which it becomes classified as ionising radiation). Electromagnetic radiation is essentially caused by any electrically driven device, and is of course generated intentionally in communication systems.

Typical Industrial applications often exhibiting high electromagnetic radiation levels include: metal welding, heating and hardening, plastics manufacturing (moulding, welding and lamination) and electrical power distribution. This radiation is typically found in the vicinity of the instrumentation, but it may cover a significantly large area, depending on the levels of radiation and how low its frequency is.

Typical communications applications with potentially high levels include all radio frequency communication systems (HF, VHF and UHF bands/radio, television, CB, etc), cellular communications from 900 MHz to 2,7 GHz (base stations, repeaters and cellular handsets), satellite communications (typically in band segments between 2 to 30 GHz) and radar systems (commercial and military).

These transmissions are typically in the format of fixed directional (repeaters, satellite base stations, etc), swept directional (radars, etc) and omni-directional (cellular base stations and repeaters). Therefore the levels of environmental exposure to such transmissions may be limited, depending on antenna-patterns and lobes.

Electromagnetic radiation

The term 'electromagnetic' refers to two components - an electrical field/plane and magnetic field/plane. Both fields have individual dangers associated with them, and also combined dangers. The electrical field has good propagation properties in free-space (and many materials), but is easily stopped by a shield (grounded metal foil, etc). The magnetic field penetrates almost any material, but is generally more of a 'close-range' danger.

Due to these properties of the magnetic field in particular, electromagnetic radiation is generally divided into two categories: near field and far field. As a rule, the near field is deemed as anything less than three times the wavelength, the far field anywhere more than three wavelengths from the source. Wavelength is calculated by dividing the speed of light (~300 000 000 m/s) by the frequency (in Hz) of the radiation in question.

In the near field, the electrical and magnetic components carry no relationship in terms of field strength and must therefore be measured individually, especially as the magnetic field is typically very high. However, in the far field a relationship exists between the two components and it is really only necessary to measure one component. As the electrical field is now much more prominent, it is typically this component that is measured.

E (V/m) = H (A/m) x 377 Ω

Generally the effects of electromagnetic radiation on the human body can be categorised according to frequency, as low-frequency (LF) being from DC (0 Hz) to 32 kHz, and high-frequency (HF) being anything greater than 32 kHz. The effects on the body include:

LF:

* Low levels: Subtle changes in the body's calcium metabolism have been noted.

* Medium: Changes in protein and DNA synthesis, and evident nerve effects.

* High: The excitability of the central nervous system is changed.

* Very High: Severe heart dysfunction and acute dangers to one's health.

HF:

* The areas of the body with the least blood flow (bone structure, eyes, etc) are most endangered. The body is heated by the radiation, with the obvious effect being burns. May also cause blindness, various types of cancer, hormonal changes, stunted cell growth and may have an effect on the immune system.

The concerns as to the possible effects were raised to a high level during the 1990s, with several studies conducted. This led to various standards being created to attempt to control and limit the exposure to this radiation. In Europe the International Commission for Non-Ionising Radiation Protection (ICNIRP) was created and in April 1998 the standard 'Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz)' was published. This standard has been widely accepted and applied. In South Africa, the Department of Health has a division called the Directorate: Radiation Control. They have selected the ICNIRP-standard for use in South Africa, and have also published a document, with the same name, based on the ICNIRP-guideline.

The Department of Health is responsible for administering the Hazardous Substances Act, 1973 (Act 15 of 1973), which may include most high-power electrical systems and most transmission equipment. According to the Act, any person who wishes to import or manufacture such devices has to obtain a licence in terms of section 4(i) (b). This licence is issued if the product complies with the internationally recognised requirements for safety and performance. Should such a licence be required and consequently be issued by the Department of Health, then conformity to the document 'Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz)' of the Directorate: Radiation Control, becomes a legal requirement. If no legal requirement for conformity exists, the document is merely a guideline, with pro-active control of radiation being the key.

Ultimately, apart from any possible legal requirements, it is always wise to be pro-active and ascertain whether a possible radiation hazard does exist for both employees and communities in the surroundings of any potentially hazardous equipment.

Accutronics is the representative of several manufacturers of products for RF and microwave transmission applications. One of these companies is called Narda Safety Test Solutions (Narda-STS). It is a manufacturer of radiation monitoring equipment, used specifically to monitor non-ionising radiation.

For more information contact Tobie Muller, Accutronics, 011 463 2287, [email protected]



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

High-precision measurement of insulating gases
Analytical Instrumentation & Environmental Monitoring
WIKA has launched the next generation of its GA11 gas analyser. It enables switchgear operators, manufacturers and maintenance companies to record the quality of SF6 gas and alternative insulating gases.

Read more...
Say goodbye to missed contamination with real-time colour monitoring
Analytical Instrumentation & Environmental Monitoring
Applied Analytics offers seamless and rapid colour monitoring in processes with an industry-proven analyser that quickly and accurately monitors colour in your sample stream for impurities and inconsistencies.

Read more...
Metrology laboratory is the heart of data-driven production consistency
Analytical Instrumentation & Environmental Monitoring
Pressing and welding have been at the core of Tier 1 automotive supplier, Malben Engineering for 50 years; but it is the company’s investment in its state-of-the-art metrology laboratory which has set it apart.

Read more...
Unlocking precision: The future of inline concentration measurement
Analytical Instrumentation & Environmental Monitoring
[Sponsored] In today’s resource-conscious industrial world, manufacturers are under growing pressure to optimise productivity, ensure consistent product quality and minimise waste. One of the most effective levers for achieving these goals lies in mastering concentration measurement, and Anton Paar is redefining how it is done.

Read more...
High-precision measurement of insulating gases
WIKA Instruments Analytical Instrumentation & Environmental Monitoring
WIKA has launched the next generation of its GA11 gas analyser. It enables switchgear operators, manufacturers and maintenance companies to record the quality of SF6 gas and alternative insulating gases.

Read more...
Smart sensors for cleaner, safer food and beverage processes
Instek Control Analytical Instrumentation & Environmental Monitoring
Instek Control specialises in advanced measurement solutions tailored for the food, beverage, pharmaceutical and mining industries. Among the company’s offerings are advanced process sensors from Anderson-Negele, as well as ALVIM biofilm monitoring technology.

Read more...
Elevating mining separation processes through precision instrumentation
Endress+Hauser South Africa Analytical Instrumentation & Environmental Monitoring
In mining operations, the quest for efficiency and productivity is key. There is an urgent need for innovative solutions to enhance the performance of extraction processes while balancing operational costs and environmental impact.

Read more...
Alfa Laval launches next generation
Analytical Instrumentation & Environmental Monitoring
Alfa Laval has launched Clariot, a next generation, AI-based condition monitoring solution, precision-built for hygienic process equipment to deliver more accurate analysis and support.

Read more...
The next generation in metal sorting
Mecosa Analytical Instrumentation & Environmental Monitoring
In the metal recycling industry, companies are increasingly challenged to not only improve the efficiency of their processes but also to raise the quality and purity of the sorted materials to new levels. By integrating proven spectral analysis technology into its market-leading REDWAVE XRF sorting system, REDWAVE is unlocking new opportunities for metal recycling, particularly in aluminium recovery.

Read more...
Ensuring clean and safe water
Endress+Hauser South Africa Analytical Instrumentation & Environmental Monitoring
Endress+Hauser’s comprehensive range of disinfection sensors are designed to monitor and control disinfectant levels in water treatment processes.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved