Editor's Choice


Control loop: Case History 169 - Tuning a very difficult temperature control loop

November 2019 Editor's Choice

As I have mentioned in previous articles, Greg McMillan, one of the world’s top control experts, has said that he finds temperature control loops generally the worst optimised processes as most people try tuning them without any scientific tuning tool, and the average human being has not got a long enough life span to tune them properly by trial and error. I recently came across a good example of this when optimising some controls in a chemical processing plant.

The loop in question is a temperature control loop with which the operators in the plant were having great difficulty. It was terribly slow and never seemed to be controlled. It is a critical temperature, and the operators were terrified of it moving more than one or two degrees. (The transmitter range is 0-150°C). A plant control engineer had spent many days trying to get a good step in manual to be able to determine the dynamics of the process. However, it seemed almost impossible to get any meaningful response from the steps. The temperature didn’t seem to move properly (repeatably) in spite of numerous small steps that were made.

The operators were finally persuaded to let us make much bigger steps on the controller’s output, and after quite long tests taking nearly two days, we were able to get a process response that was representative of the dynamics. We could then try tuning.

Slow control to avoid instability

The dynamics of the process turned out to be extremely unusual. Basically, it is a self-regulating process with a deadtime of about 14 minutes and time constant of 8 minutes. This makes it decidedly slow and hugely deadtime dominant – characteristics regarded as making a process difficult to control. Such processes need to be controlled with a slow control to avoid instability. Even more interesting is the fact that the proportional gain of the process is 0.04 which is unbelievably small for a self-regulating process. (As a rule of thumb, self-regulating processes should have a process gain between 0.5 and 2).

The gain of 0.04 means that the process can only be controlled over a range of 4% of the measuring span, for a full movement of the valve from zero to 100%. To express it in another way, it means that in this case control is only possible over a range of 6°C, which is very small and could result in no control if the process changes over a bigger range.

In this case the plant personnel previously had little luck in trying to tune the loop by trial and error, and the existing tuning parameters as found in the controller were P = 0.1, I = 4.5 min/repeat, and D = 1.1 minutes. The closed loop response to a setpoint step change of 3°C is shown in Figure 1. (These tests were done on an accurately modelled simulation, as it would have been difficult and time wasting to do them on the plant). It showed the process took an absolutely amazing 75 hours to reach the new setpoint! It is also interesting to see how far the controller output had to move to make the small process change, all because of the ridiculously small process gain.

New tuning gives faster response

Once we had completed the open loop step test to obtain a response truly representative of the process dynamics, we could then use the Protuner to tune it. The new tuning is P = 6.0, I = 12 min/repeat, and no derivative. The final closed loop simulated test is shown in Figure 2 on the same time scale as used in the first figure so one can compare the difference in response. The process got to setpoint in 3 hours i.e. 25 times faster than before.

Out of interest, the control worked extremely well and the response was very similar to the simulated one. The loop has been running in automatic and keeping the operators happy ever since.

In conclusion

To finish off this article, I have included a test performed on a flow loop which tended to cycle. Figure 3 is of a closed loop test performed on the loop, which shows that the valve has a very interesting and unusual characteristic that I have not come across previously. It sticks very badly, but only when opening. In the figure one can see on the first two steps how the valve sticks for approximately 8 seconds before it starts moving. However on the third step when the setpoint stepped down, the valve reacted immediately, and started closing downwards.


Michael Brown

It is possible to get some sort of control even with this bad valve behaviour, which can and did, cause cycling with normal tuning. One must tune the controller to react slowly in order to compensate for the 8 second sticking period, which should be considered as deadtime in the loop. Obviously this situation should not be left like this, as the control is now terribly slow, and the valve should be fixed.

One other thing that can be seen in the test is that the valve/positioner combination has problems (possibly in a linkage) which causes the valve to jump around sometimes as annotated in the figure.

Michael Brown

Michael Brown is a specialist in control loop optimisation with many years of experience in process control instrumentation. His main activities are consulting, and teaching practical control loop analysis and optimisation. He gives training courses which can be held in clients’ plants, where students can have the added benefit of practising on live loops. His work takes him to plants all over South Africa and also to other countries. He can be contacted at Michael Brown Control Engineering cc, +27 82 440 7790, [email protected], www.controlloop.co.za




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Loop signature 22: How cyclical disturbances affect a control loop
Michael Brown Control Engineering Editor's Choice
When tuning noisy loops, we recommend in our courses that one should eliminate the noise by editing it out, so the tuning will be done only on the true process response, free of any noise. The controller is controlling the process, and is not controlling the noise.

Read more...
High-performance motion control for teabag packaging machine
Beckhoff Automation Editor's Choice
Teepak relies on PC-based control and drive technology from Beckhoff to set new benchmarks for speed and precision in its teabag packaging machines.

Read more...
VEGA takes the pressure out of water pressure measurement
VEGA Controls SA Editor's Choice
Water treatment systems in metropolitan areas require careful monitoring and management processes across widespread networks. However, process plants choosing VEGA for their process automation know that the company offers more than just precise and reliable pressure sensors and instrumentation.

Read more...
Advantages of wireless storage tank and container tank level monitoring
Turck Banner Southern Africa Editor's Choice
Implementing a tank monitoring system that utilises ultrasonic or radar sensors in a wireless network has many advantages.

Read more...
Bringing Industry 4.0 to a castings foundry for heavy industries
Editor's Choice
Moving to Industry 4.0 takes time and determination, especially for an established company in a heavy industry. Castings foundry, POK in Mexico has moved toward Industry 4.0 in a series of steps over several years, changing from manual to automated systems for more available, immediate and reliable data.

Read more...
SMOM – the future is here now
Iritron Editor's Choice IT in Manufacturing
In his presentation at the recent MESA Africa conference, Neels van der Walt, business development manager at Iritron, revealed the all-encompassing concept of smart mining operations management (SMOM), and why it is inextricably linked to the future of worldwide mining operations.

Read more...
Navigating disruption in manufacturing
Editor's Choice IT in Manufacturing
When considering IT in manufacturing, the underlying assumption is twofold: first, a wave of valuable maturing technologies can be harnessed to create new business value, and second, the environment in which these technologies will be applied will be relatively predictable, with change following a manageable, evolutionary path. However, recent disruptions have shattered these assumptions.

Read more...
The fascination of movement
Editor's Choice Motion Control & Drives
A motor from Faulhaber provides gentle motion for the finest watches in the world.

Read more...
Complete system for transparent energy monitoring
Beckhoff Automation Editor's Choice Electrical Power & Protection
Transparent energy monitoring reduces both machine downtime and the necessity to oversize the corresponding components. Added to these advantages are simplified preventive maintenance, and increased production efficiency. The wide range of PC-based control technology from Beckhoff offers a solution that can be optimally adapted to individual applications.

Read more...
Iritron’s year of consolidation
Iritron Editor's Choice System Integration & Control Systems Design
Despite the multiple challenges faced by businesses in South Africa, the buoyancy of the technology sector worldwide has produced some green shoots for automation specialist, Iritron.

Read more...