Motion Control & Drives


Control loop: Case History 155 - Control with unstable tuning

July 2017 Motion Control & Drives

I have come across quite a few control loops that were doing a reasonable job of control and which were in fact completely unstable, and in some cases were working much better than if the loop had been tuned with normal robust parameters.

The most common example of unstable control that works well is of course On/Off control, which is used on processes with long lags, like many temperature processes, or on slow integrating processes like levels with very long retention times. An example of a typical temperature controller like this is a thermostat.

I have also often come across plant operators controlling fairly slow integrating processes in manual by opening and closing the valve between two limits to reverse the ramps. This results in the process having a limited cycle but staying within desired boundaries.

Another interesting example of unstable control working well was on a molasses flow loop in a carbon black plant. Molasses is a terrible sticky and viscous fluid to work with, and the plant technicians were having endless problems with the valve sticking. The loop was then tuned to give a small unstable cycle. This kept the valve moving continuously and prevented it from sticking. Quite ingenious!

I recently came across a very interesting example of a flow loop that was only able to work because it had completely unstable tuning. The loop was the reflux flow on a distillation column, and this is an important flow as it is used as the cascade secondary for the column top temperature control. Figure 1 shows the open loop test on the valve.

Figure 1.
Figure 1.

It shows the following major valve problems:

• It is about seven times oversized, which is very bad for control as oversized valves magnify all the control problems by the oversize factor.

• The valve and positioner combination is working very badly. There are huge overshoots and undershoots on step changes, and at times it seems as if the positioner is actually slightly unstable.

• The valve also appears to be quite sticky, and at times it suddenly jumps to a new and often incorrect position where it sticks.

These factors effectively make the valve very non-repeatable, and it would not really be possible to get any reasonable control with normal robust tuning. However, the person who had tuned the loop had done a very clever thing. He had inserted a very high proportional gain, and a relatively slow integral. The high gain made the loop unstable, and resulted in a small amplitude continuous cycle. The integral was fast enough to keep the process near setpoint.

Figure 2 shows a closed loop test with a constant setpoint. The resultant performance is good enough for to allow good control on the column temperature. Obviously this is not the ideal, as one wonders how long the valve will last, but it does work. (Many plants like refineries may not have bypass valves on the control valves, and hate having to shut down a process to work on a valve.)

Figure 2.
Figure 2.

Another example of unstable tuning working quite well was on a gas pressure control loop on a furnace, also in a petro-chemical refinery. Figure 3 shows the loop cycling continuously with unstable tuning, but following setpoint changes reasonably well and quickly.

Figure 3.
Figure 3.

Figure 4 shows the open loop test. There is a problem with the valve/positioner combination. There is quite a bad overshoot on step changes, an indication of negative hysteresis. Other problems are that the valve is probably several times oversized, and that there is non-linear installed linearity, with process gain increasing as the process moves down. Trying to control this valve would really cause difficulties.

Figure 4.
Figure 4.

I think the person who optimised the loop deliberately tuned it to be unstable, so that the valve is continuously forced to operate in a small band around the correct position, and it worked well.

So maybe instability is sometimes not too bad!

Michael Brown is a specialist in control loop optimisation with many years of experience in process control instrumentation. His main activities are consulting, and teaching practical control loop analysis and optimisation. He gives training courses which can be held in clients’ plants, where students can have the added benefit of practising on live loops. His work takes him to plants all over South Africa and also to other countries. He can be contacted at Michael Brown Control Engineering cc, +27 (0)82 440 7790, [email protected], www.controlloop.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

WEBER-HYDRAULIK modernises warehouse in record time
Motion Control & Drives
WEBER-HYDRAULIK is a leading international specialist in customised hydraulic solutions. After its old buffer warehouse had become outdated and was partially worn out mechanically, the decision was made to completely renovate it.

Read more...
OMC deploys cobots to improve throughput ten times
Motion Control & Drives
OMC, a pioneer in optoelectronics design and manufacture, is investing to introduce innovative cobot technology onto its fibre optic production line.

Read more...
Yaskawa Southern Africa launches laser welding cell
Motion Control & Drives
Yaskawa Southern Africa has partnered with Industrial Manufacturing Systems South Africa to introduce the Megmeet laser welding cell, a breakthrough solution combining precision robotics with cutting-edge laser technology.

Read more...
Next-gen planetary gearboxes
SEW-EURODRIVE Motion Control & Drives
Leading the way in planetary gear unit innovation, SEW-EURODRIVE is extending its reach across a growing range of industries, delivering the advantages of this powerful technology through locally engineered solutions that ensure faster lead times.

Read more...
Record-breaking dragline relocation
Motion Control & Drives
Draglines are key pieces of equipment in open-pit mining. BHP Mitsubishi Alliance entrusted Mammoet with the relocation of a 3100 ton Marion 8050 dragline from one end of the Peak Downs coal mine in Queensland, Australia to another, a full 27 km away.

Read more...
igus expands 3D printing capabilities
igus Motion Control & Drives
Motion plastics specialist, igus South Africa has introduced a new 3D printing service capable of producing custom parts in two engineering-grade polymers with exceptional strength and without the need for lubrication.

Read more...
Bühler adds new die refurbishment machine
Motion Control & Drives
Bühler has reinforced its commitment to customers in southern Africa with the installation of a new die refurbishment machine at its Johannesburg workshop.

Read more...
Reimagining rotation for a circular and sustainable future
SKF South Africa Motion Control & Drives
Through the design and manufacture of components with sustainability at their core, SKF is reimagining the future of rotation, rolling away from traditional, consumable-based thinking toward a smarter, more sustainable circular approach.”

Read more...
Optimising operational efficiencies through advanced filtration systems
Bearing Man Group t/a BMG Motion Control & Drives
Filtration is the only effective defense against wear and tear when contaminants are present. It is therefore critical that effective filter components are correctly used to ensure dependable performance, high efficiency and extended service life of machinery and vehicles.

Read more...
Loop Signature 30: Nonlinearity in control loops (Part 1)
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
If nonlinearity occurs it means that if one is to carry on controlling with the same response to changes in load or setpoint, then the tuning of the controller will also need to be adjusted to meet the new conditions.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved