IT in Manufacturing


Spatial computing and AI – where no man has sustainably gone before

January 2025 IT in Manufacturing

Some will argue that we now live in a sci-fi world where we dream of electric sheep, and today’s technology – unlike HAL – can provide us with the answers we seek. To the realist it might seem a bit implausible, but when you start using terms like ‘spatial computing realises sustainable AI’ it doesn’t seem that far-fetched.

To place it in context, there’s no doubt that AI is powering a new future; however, we are also facing a tremendous challenge. How do you meet the growing energy demands of these intelligent systems while keeping its environmental impact in check? Indeed, AI’s hunger for computational power has driven a sharp increase in energy consumption, putting the quest for sustainability at odds with technological advancement. And as demand for AI services continues to grow, so does the strain on our energy resources.

Fortunately, there’s also an answer. Enter spatial computing, a technology that integrates the physical and digital worlds through augmented reality (AR), virtual reality (VR), and mixed reality (MR). Spatial computing has the potential to optimise AI systems’ energy efficiency by reshaping how it’s managed, particularly within data centres.


Johan Potgieter.

Quenching the data centre’s thirst

Today’s data centres use three-dimensional spatial mapping, which generates highly detailed models of their physical environment. This allows for the precise placement of AI hardware, optimising airflow and minimising hotspots, which in turn improves cooling efficiency. Sensors embedded within the data centres can then monitor environmental parameters like temperature and humidity, ensuring that hardware is always placed in the most energy-efficient configuration.

To take it one step further, spatial computing also supports dynamic resource allocation. By balancing electrical loads across different components and preventing overloading, the technology ensures a more even distribution of power. Furthermore, analysing spatial data helps identify underutilised hardware, enabling data centres to redistribute workloads and reduce unnecessary power consumption.

Spatial computing also allows for targeted cooling, where specific areas requiring additional cooling are identified in real time, reducing the need for energy-intensive blanket strategies. Adaptive cooling systems can also adjust automatically based on current conditions, again ensuring optimal energy use.

Open standards and sustainability

An important part of integrating spatial computing into AI infrastructure is ensuring that solutions are built on open standards such as the IEC 61499 framework championed by UniversalAutomation.org, of which Schneider Electric is a member.

This vendor-agnostic approach allows organisations to break free from proprietary constraints, fostering interoperability and sustainability. By adhering to open standards, organisations can create AI ecosystems that are not only more adaptable and efficient but also better aligned with long-term environmental goals.

Spatial computing at work

Spatial computing can also be integrated with energy management systems to control and optimise power consumption. For example, AI-enabled predictive maintenance can detect potential failures in advance, reducing downtime and preventing energy waste. Additionally, spatial computing facilitates the integration of renewable energy sources such as solar and wind power by dynamically adjusting AI workloads based on energy availability.

By using spatial intelligence, organisations can therefore reduce the energy footprint of AI, while simultaneously enhancing performance. In essence, spatial computing offers the ability to transform AI infrastructure from being energy-intensive to energy-efficient.

Spatial computing also has broad applications that contribute to sustainability across industries:

• Agriculture: Spatial computing helps optimise crop yields, while minimising environmental impact. By integrating spatial data with advanced analytics, farmers can monitor soil health, water usage and crop conditions in real time, enabling precise application of fertilisers and pesticides.

• Urban mobility: In cities, spatial computing platforms promote greener transportation methods. These systems use real-time data to offer insights into traffic patterns, air quality, and safe cycling routes, encouraging the adoption of environmentally friendly transportation options.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Sustainable energy management
Siemens South Africa IT in Manufacturing
Utilising its innovative ONE approach technology, Siemens provides complete transparency on resource consumption and offers data-driven optimisation recommendations for sustainable energy management.

Read more...
Paving the way for a carbon-neutral future in South Africa
IT in Manufacturing
At ABB Electrification, we believe the infrastructure of the future must do more than support daily operations, it must anticipate them. We are committed to building intelligent systems that connect and optimise infrastructure across sectors.

Read more...
Protecting buildings’ embodied carbon with retrofitted systems
Schneider Electric South Africa Sensors & Transducers
The World Economic Forum has said that around 80% of the buildings in existence will still be around in 2050; it is therefore essential that in order to combat climate change we retrofit them for energy efficiency.

Read more...
Three decarbonisation myths and how organisations can debunk them
Schneider Electric South Africa Electrical Power & Protection
A UN Climate Change Report revealed that the world is on track to miss its 2050 net zero targets, with temperatures expected to increase by over 2,4°C by 2100. To help shift positive intent to concrete action, Schneider Electric outlined three of the most common myths surrounding decarbonisation and how organisations can get started on their decarbonisation journey.

Read more...
Africa’s hidden AI advantage
IT in Manufacturing
Through my work implementing AI systems across three continents, I’ve become convinced that Africa’s unique context demands urgent AI adoption. Successful implementation requires local expertise to understand resource constraints as design parameters to create the innovations that make technology truly work under real-world conditions.

Read more...
Siemens Xcelerator empowers space-tech pioneer, Skyroot Aerospace
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software has announced that Skyroot Aerospace, a leading private space launch service company in India, has adopted Polarion software from the Siemens Xcelerator portfolio to digitally transform its software development processes and enhance efficiency as it aims to accelerate access to space for its customers worldwide.

Read more...
Water is running out, is your ESG strategy ready?
IT in Manufacturing
Water is one of the most critical yet undervalued resources in modern business. Water stewardship asks businesses to understand their water footprint across the entire value chain and to engage with others who share the same water resources.

Read more...
Cybersecurity in 2025: Six trends to watch
IT in Manufacturing
Rockwell Automation’s?10th?State?of?Smart?Manufacturing report finds that cybersecurity risks are a major, ever-present obstacle, and are now the third-largest impediment to growth in the next 12?months.

Read more...
The state of the smart buildings market in 2025
IT in Manufacturing
Smart buildings are entering a transformative phase, driven by sustainability goals, technological innovation and evolving user expectations. According to ABI Research’s latest whitepaper, the sector is undergoing a strategic overhaul across key areas like retrofitting, energy efficiency, data-driven operations and smart campus development.

Read more...
Digital twin for Bavaria’s National Theatre
Siemens South Africa IT in Manufacturing
Siemens and the Bavarian State Opera are digitalising the acoustics in Bavaria’s National Theatre in Munich, Germany. The result is a digital twin that simulates sound effects, orchestral setups and venue configurations in a realistic 3D acoustic model so that musicians, the director and conductors can assess a concert hall’s acoustics even before the first rehearsal.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved