IT in Manufacturing


South Africa’s role in the AGI revolution

November 2024 IT in Manufacturing


Mandy Hattingh, legal practitioner, NSDV.

Artificial Intelligence (AI) has found its way into general conversation, after the emergence of large language models like ChatGPT, which is capable of generating text on a near-infinite range of topics. However, the discussion is increasingly turning to the search for Artificial General Intelligence (AGI), which could entirely change the game.

Narrow AI is trained to perform a specialist function such as natural language understanding, playing chess, or identifying spam. In contrast, AGI will resemble a genius polymath, able to tackle a wide range of challenges across any field. AGI is expected to revolutionise sectors such as healthcare, scientific research, and automation. This automation could lead to increased productivity and efficiency, but may also result in substantial job displacement. Naturally, AGI’s potential applications come with environmental, social, and governance (ESG) considerations that must be addressed.

Before considering the ESG implications of AGI, it is worth noting that its discovery is currently constrained by three main factors: processing power, access to information, and energy supply.

AGI requires vast amounts of computational resources to mimic human-level intelligence, far surpassing the capabilities of today’s AI models. In addition, training AI and AGI requires access to large, high-quality data sets. As human-created data is a finite resource, AIs and AGIs may create new knowledge autonomously to teach themselves, raising important questions about privacy, control, and the implications of AI generating its own data. However, none of this is possible without sufficient energy.

Training AI requires huge amounts of energy. Statistics published by OpenAI indicate that training ChatGPT-3 took 34 days and consumed approximately 1248 MWh of electricity during that time. By contrast, the next iteration, ChatGPT-4, took 100 days to train, consuming an estimated 50 GWh of electricity. This amount of energy is roughly enough to power 17 000 South African homes for a year.

Current models of AI typically train the program (resulting in a knowledge cutoff date), review the program, and then publish it to the general public for use. When an AI receives an instruction, it then generates a response based on the knowledge it acquired during training. The largest computational power and energy demand therefore occurs during training, although processing power and energy are required when instructions are fed to the AI. However, AI systems are now evolving towards an ‘always learning’ phase, where they continuously update and refine their knowledge in real time. The energy demand associated with their operation will thus increase and become sustained, as this shift requires constant computational processing. Continuous learning involves ongoing data analysis, model adjustments, and real-time decision making, all of which consume significant computational power and electricity. When AGI emerges, this effect will be amplified. AGI’s ability to understand, learn, and apply knowledge across a wide range of tasks in a human-like manner will necessitate even more complex computations and perpetual data processing, further exponentially escalating electricity demand.

The inability of regions or nations to meet these electricity demands could limit access to AI and AGI technology to regions and entities with stable, affordable, and increasingly green energy supplies. This will likely shape who can participate in the AI and AGI revolution, potentially reinforcing global and regional inequalities if not addressed equitably.

As AI becomes more prolific, more data centres will likely be constructed in South Africa, both to train AI and to host AI software locally to reduce latency − the time delay between a user’s instruction and the system’s response. Consequently, both existing and future data centres in South Africa will need to be robust, secure, and always online, or we risk missing out on the competitive advantages associated with the use and development of AI and AGI.

To ensure South Africa benefits from the AI revolution, it must adopt a proactive approach. The first and most critical step is to prioritise and incentivise investment in renewable energy. This will prevent the stalling of AI development in South Africa. There are many benefits to powering data centres with renewable energy, coupled with storage solutions like green hydrogen fuel cells or batteries to address intermittency issues. These include:

• Reducing greenhouse gas emissions.

• Reducing longer-term operational costs in the case of the tariff increases.

• Alleviating strain on the national grid and energy losses due to wheeling if renewable facilities are co-located with data centres.

• Enhancing competitiveness in the global economy where the source of energy for data centres may attract or deter foreign investment.

• Ability to feed excess power back into the grid to contribute to energy security for the broader community, and earn revenue for the data centre.

South Africa is already taking steps to encourage energy self-sufficiency at data centres, as evidenced by the National Data and Cloud Policy, published on 31 May 2024. The policy states that data centres with self-sufficient energy and water sources should be prioritised.

To drive investment in renewables in the context of data centres and the country at large, there are always two options − carrot or stick. The carrot is often preferred, as it encourages investment and innovation, making adoption more appealing, and reducing resistance. Thus, incentives such as tax breaks and reduced tariffs on renewable energy hardware should be considered to foster growth in the renewable energy sector, creating green jobs and green data centres.

Contrary to this, the South African government recently elected not to renew the 2023 tax incentives on solar panels, and imposed a 10% tariff on all imported solar panels. These actions have the potential to discourage investment in renewable energy. South Africa should consider adopting the example of other African nations that have proven successful in incentivising renewable energy investment. For example, in 2021, Kenya exempted solar and wind energy specialised equipment from VAT; in Ghana, all imported solar panels are VAT-free; and in Botswana, equipment and machinery including solar panels and inverters have been exempted from import duty.

Embracing renewable energy investment is imperative for South Africa to fully capitalise on the opportunities presented by AI and AGI. By prioritising sustainable power sources for data centres, the country can meet the substantial and continuous energy demands of advancing AI technologies. Proactive action today will enable South Africa to harness AGI for economic growth and social development, paving the way for a more equitable and sustainable future.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Why choose between Capex and Opex if you can Totex?
Schneider Electric South Africa IT in Manufacturing
In a sector marked by cyclical demand, high capital intensity, and increasing regulatory and sustainability pressures, mining, minerals and metals (MMM) companies are re-evaluating how they approach procurement and investment.

Read more...
AI and the smart factory
Schneider Electric South Africa IT in Manufacturing
Imagine walking into a factory where machines can think ahead, predict problems before they happen and automatically make adjustments to realise peak performance. This isn’t science fiction, it’s happening right now as AI continues to transform how we run industrial operations.

Read more...
Why your supply chain should be a competitive advantage
Schneider Electric South Africa IT in Manufacturing
The last five years have placed unprecedented strain on global supply chains. Leading companies are turning the challenge into an opportunity to transform their supply chains into a competitive advantage.

Read more...
Why AI will never truly understand machines
Wearcheck IT in Manufacturing
Cutting-edge technology and solutions powered by AI are embraced by specialist condition monitoring company, WearCheck, where the extreme accuracy of data used to assess and diagnose machine health is paramount.

Read more...
Buildings and microgrids for a greener future
Schneider Electric South Africa IT in Manufacturing
Buildings are no longer passive consumers of power. Structures of almost every size are evolving into dynamic energy ecosystems capable of generating, storing and distributing their own electricity. Forming part of this exciting transformation are microgrids.

Read more...
Traditional data centres are not fit for purpose
IT in Manufacturing
Traditional data centre designs are falling short, with nearly half of IT leaders admitting their current infrastructure does not support energy or carbon-reduction goals. New research commissioned by Lenovo reveals that data centre design must evolve to future-proof businesses.

Read more...
AI agents for digital environment management in SA
IT in Manufacturing
The conversation about artificial intelligence in South Africa has shifted rapidly over the past year. Among the technologies changing the pace of business are AI agents - autonomous, task-driven systems designed to operate with limited human input.

Read more...
AI-powered maintenance in future-ready data centres
Schneider Electric South Africa IT in Manufacturing
The data centre marketplace often still relies on outdated maintenance methods to manage mission-critical equipment. Condition-Based Maintenance (CBM) is powered by AI and is fast becoming a necessity in ensuring both competitiveness and resilience.

Read more...
Powering up data centre mega development
IT in Manufacturing
Parker Hannifin has secured a major contract to supply key equipment for nearly 30 aeroderivative gas turbines powering a new hyperscale data centre in Texas.

Read more...
Building resilient supply chains through smarter e-procurement
RS South Africa IT in Manufacturing
In a time of constant disruption, from supply chain uncertainty to rising operational costs, businesses that embrace digital procurement are better positioned to stay competitive and resilient.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved