Electrical Power & Protection


Why battery storage is the backbone of future smart grids

September 2024 Electrical Power & Protection

Battery energy storage systems (BESS) are becoming more and more crucial in modern smart grids as the global energy transition speeds up. Smart grids rely on them to balance and stabilise their loads. The development goals of smart grids include enhancing grid resilience and stability, supporting reliable power supply in microgrids and off-grid systems, and achieving a balanced integration of renewable energy. The key to these goals lies in robust data management capabilities, involving the seamless integration of data flow and energy flow. By collecting, monitoring, analysing, and optimising real-time data, we can ensure the efficient operation and reliability of energy systems.

Balancing intermittency with flexible dispatch

The integration of renewable energy depends heavily on BESS because wind and solar power supplies are unreliable and susceptible to weather, day-night cycles, and seasonal changes. During surplus, BESS stores electricity and releases it during shortages, ensuring grid stability. An excellent example of photovoltaic energy integration is an establishment in California, which houses a massive 3 GWh energy storage facility. Because of its substantial solar power generation, California often experiences energy surplus during peak daylight hours and shortages during the night or on cloudy days. By storing excess solar energy and releasing it during peak demand, this facility avoids solar curtailment and efficiently smooths out energy demand fluctuations. To achieve flexible deployment, real-time monitoring and analysis of energy flow is necessary, along with optimising the charge and discharge process and ensuring efficient use of renewable energy.

Enhancing resilience and reliability

Modern grids face a range of challenges, including load fluctuations, equipment failures and natural disasters. With its rapid-response backup power, BESS helps in the swift restoration of grids during emergencies, thus strengthening their resilience. One example is Australia’s biggest battery storage project, with a capacity of 1,68 GWh, which aims to enhance the resilience of the New South Wales grid. In a matter of seconds, this storage system can respond to grid demands and deliver instant backup power to handle unforeseen equipment failures and load fluctuations. Additionally, it balances the integration of new and traditional energy sources, optimises the distribution of power resources and reduces peak load pressure. Data management plays a crucial role in these processes, enabling real-time monitoring and analysis of grid and battery conditions and providing precise operational guidance and forecasts. This ensures the system operates efficiently, enhancing grid reliability by maintaining a stable power supply.

Supporting localised energy management

For remote areas and developing countries, electricity availability remains a major challenge. BESS offers sustainable and adaptable solutions, operating within microgrids or off-grid systems and ensures a dependable power supply for these regions. By creating independent energy systems, BESS delivers stable and efficient power, driving socio-economic growth and boosting energy self-sufficiency. For example, the Bahariya Oasis microgrid BESS project in Egypt combines large-scale solar inverters and energy storage systems to establish a microgrid for local businesses. Given geographical limitations and insufficient infrastructure, local renewable energy must be used as the primary energy source. This system mainly uses solar power, reducing reliance on diesel generators. This provides a continuous reliable energy supply, while significantly lowering environmental impact. By collecting and analysing comprehensive OT data, this project improves energy management, predicts maintenance needs, cuts costs and prolongs equipment lifespan.

The intelligence behind BESS

Data management is at the core of BESS’s efficient operation. Through the collection, analysis and management of data, BESS monitors energy flow, battery status and system performance in real time. Operators use this data to make precise decisions, for example determining the best times for charging and discharging and predicting energy demand. Moreover, predictive maintenance through efficient data management enhances system maintainability, extending equipment life cycles and reducing failures, thereby lowering operating costs. As the Internet of Energy (IoE) and energy transition evolve further, data management will continue to play an important role in improving the efficiency and reliability of BESS operations, providing a solid foundation for the future of smart grids.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

South African businesses can alleviate energy price crisis
Electrical Power & Protection
While grid instability remains a concern, the immediate and most critical driver of South African commercial and industrial investment in renewable energy is the escalating cost of electricity.

Read more...
Real-time modelling is the key to a resilient, bi-directional energy grid
Schneider Electric South Africa Electrical Power & Protection
Utilities and municipalities are facing a challenge as the country’s legacy power grid, engineered for one-way energy delivery from centralised suppliers to end-users, must rapidly evolve to meet a new paradigm.

Read more...
Shielding data centre growth from the looming power crunch
Schneider Electric South Africa Electrical Power & Protection
Today’s digital economy is placing unprecedented strain on the power grid. The good news is that these challenges are not insurmountable. By adopting proactive strategies such as alternative power sources, infrastructure planning and software, operators can secure capacity, build resilient facilities and scale sustainably.

Read more...
Circuit breaker innovations
Schneider Electric South Africa Electrical Power & Protection
Recent advancements in circuit breaker technology have seen a major step forward in setting new standards for efficiency and sustainability in data centres, industrial and commercial infrastructure.

Read more...
Common battery tester errors and what they mean
Comtest Electrical Power & Protection
Battery testers help quickly assess battery health, diagnose issues, and determine whether a battery needs a charge or replacement. This guide covers some of the most common battery tester errors, what they mean, and what can cause them.

Read more...
Cathodic protection design considerations that influence ESG outcomes
Omniflex Remote Monitoring Specialists Electrical Power & Protection
Major infrastructure like wharves, bridges, pipelines and tanks are at constant risk of corrosion. David Celine, managing director of cathodic protection specialist Omniflex, explains how CP system design can support ESG commitments, while simultaneously lowering costs and improving maintenance capabilities.

Read more...
Africa’s digital future – building critical power infrastructure for data centre leadership
Electrical Power & Protection
Africa’s digital economy is growing rapidly, and countries like South Africa, Nigeria and Kenya are leading the way. However, a major challenge remains. Sustainable and reliable power systems must form the backbone of Africa’s digital growth to ensure lasting success.

Read more...
Recovering condensate and waste heat
Electrical Power & Protection
According to Associated Energy Services, strong partnerships with thermal energy users optimise opportunities to benefit from condensate return. waste heat recovery and the prevention of system contamination.

Read more...
Quantum engine powered by particle entanglement
Electrical Power & Protection
In a landmark achievement that signals a new era in energy research, a team of physicists in China has carried out the first successful test of a quantum engine powered by particle entanglement. This technological breakthrough represents a fundamental shift in our approach to energy production.

Read more...
Advancing sustainability in South Africa’s fruit industry
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric, together with Technoserve Medium Voltage, has implemented its advanced SF6-free MV switchgear at Two-a-Day situated in Grabouw in the Overberg district.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved