Electrical Power & Protection


Energising South Africa

August 2024 Electrical Power & Protection

With South Africa facing a critical juncture in its energy transition – needing to meet rising demand while reducing emissions – energy storage is key, promising stable grids and integrating renewables. However, when discussing South Africa’s energy transition and the role of energy storage, it is crucial to differentiate between two distinct segments – in-front-of-the-meter systems and behind-the-meter systems. These segments have different timelines, approaches and resource pools, but both are equally important for the country’s transition.

Behind-the-meter (BTM) systems are typically smaller and usually fall into the private sector space such as residential, commercial, and industrial systems. These systems are quicker and easier (although still complex) to install, and could have a faster impact on South Africa’s transition. This impact of distributed systems has already been seen over the past three years with the proliferation of solar PV installations, mainly by small businesses and residential users.

In-front-of-the-meter (FTM) systems are bigger utility-scale projects that will be driven by Eskom or other power utilities, or independent power producers (IPPs) and Eskom. These are typically long-term projects and solutions that could take four to six years or more to complete.

While both are crucial to South Africa’s energy transition, behind-the-meter solutions provide immediate relief to the country’s energy constraints. In-front-of-the-meter projects are key to meeting actual energy transition targets and reducing emissions. These are typically large sustainable projects that will enhance the larger grid infrastructure utilisation, and ultimately assist to reduce the reliance on coal power stations.

Energy goals

Energy storage is considered crucial for South Africa’s energy goals, particularly in ensuring stable grids and integrating renewables. This is because, while the country has great renewable energy sources, the problem is its load profile that does not align with the renewable energy generation profile.

Hence, we need energy storage solutions to store energy during peak generation time, when there is lower demand. Excess energy produced during peak generation periods should be stored in energy storage systems and dispatched during high-demand periods, which will ensure a more efficient energy network.

Yet, this is where we have a problem in South Africa because in areas of the highest solar irradiance, where solar PV projects are most economical, we have grid capacity constraints and a lack of energy storage solutions. Currently, projects are underway to implement large battery energy storage systems in strategic locations, so that excess energy is not lost; but these projects take time.

To have a sustainable electricity network, energy storage is a crucial part of the system. While technology is likely to evolve and change in the future, there must be some sort of storage system as part of the long-term solution for the country’s energy transition.

Unfortunately, various factors have contributed to the slow adoption of energy storage in South Africa. With the rapid advancement of technology over the past few years, it has been difficult for investors to align with and invest in a specific technology and solution for local production, without knowing whether it will still be viable in a few years. The lack of a sufficient regulatory framework also added uncertainties to the industry.

It’s not just about loadshedding

Loadshedding has forced the country to transition very quickly to accepting energy storage solutions in behind-the-meter applications. However, it has been a far harder sell when it comes to commercial and industrial consumers because, depending on the type of load and the number of hours of backup they need, the return on investment can be between five and eight years, with solar PV included.

Encouragingly, people are starting to understand all the benefits of energy storage. Along with the maturity of solutions and the energy environment, various measures can be implemented to accelerate energy storage adoption in South Africa. For example, a significant driver is the tax relief provided through Section 12B of the Income Tax Act, which offers favourable tax incentives to consumers that invest in renewable energy, specifically for systems coupled to solar PV installations. It will be beneficial if this relief is extended past the date of 28 February 2025, and is expanded to include battery energy storage systems with or without being coupled to solar PV systems.

Additionally, proper financial structures and frameworks should be developed by all utilities for selling excess energy back into the grid. From a residential, commercial, and industrial point of view, this would also make the adoption of energy storage solutions a lot easier. Finally, energy wheeling and trading through municipal infrastructure, some of which already have proper fee structures and frameworks in place, could be implemented.

Other than merely sidestepping loadshedding, there are many other benefits to energy storage solutions, which people should understand and use to make informed decisions. Users should get an experienced partner that is qualified to provide them with the best advice and technical solutions for their specific needs.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

South African businesses can alleviate energy price crisis
Electrical Power & Protection
While grid instability remains a concern, the immediate and most critical driver of South African commercial and industrial investment in renewable energy is the escalating cost of electricity.

Read more...
Real-time modelling is the key to a resilient, bi-directional energy grid
Schneider Electric South Africa Electrical Power & Protection
Utilities and municipalities are facing a challenge as the country’s legacy power grid, engineered for one-way energy delivery from centralised suppliers to end-users, must rapidly evolve to meet a new paradigm.

Read more...
Shielding data centre growth from the looming power crunch
Schneider Electric South Africa Electrical Power & Protection
Today’s digital economy is placing unprecedented strain on the power grid. The good news is that these challenges are not insurmountable. By adopting proactive strategies such as alternative power sources, infrastructure planning and software, operators can secure capacity, build resilient facilities and scale sustainably.

Read more...
Circuit breaker innovations
Schneider Electric South Africa Electrical Power & Protection
Recent advancements in circuit breaker technology have seen a major step forward in setting new standards for efficiency and sustainability in data centres, industrial and commercial infrastructure.

Read more...
Common battery tester errors and what they mean
Comtest Electrical Power & Protection
Battery testers help quickly assess battery health, diagnose issues, and determine whether a battery needs a charge or replacement. This guide covers some of the most common battery tester errors, what they mean, and what can cause them.

Read more...
Cathodic protection design considerations that influence ESG outcomes
Omniflex Remote Monitoring Specialists Electrical Power & Protection
Major infrastructure like wharves, bridges, pipelines and tanks are at constant risk of corrosion. David Celine, managing director of cathodic protection specialist Omniflex, explains how CP system design can support ESG commitments, while simultaneously lowering costs and improving maintenance capabilities.

Read more...
Africa’s digital future – building critical power infrastructure for data centre leadership
Electrical Power & Protection
Africa’s digital economy is growing rapidly, and countries like South Africa, Nigeria and Kenya are leading the way. However, a major challenge remains. Sustainable and reliable power systems must form the backbone of Africa’s digital growth to ensure lasting success.

Read more...
Recovering condensate and waste heat
Electrical Power & Protection
According to Associated Energy Services, strong partnerships with thermal energy users optimise opportunities to benefit from condensate return. waste heat recovery and the prevention of system contamination.

Read more...
Quantum engine powered by particle entanglement
Electrical Power & Protection
In a landmark achievement that signals a new era in energy research, a team of physicists in China has carried out the first successful test of a quantum engine powered by particle entanglement. This technological breakthrough represents a fundamental shift in our approach to energy production.

Read more...
Advancing sustainability in South Africa’s fruit industry
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric, together with Technoserve Medium Voltage, has implemented its advanced SF6-free MV switchgear at Two-a-Day situated in Grabouw in the Overberg district.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved